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Abstract—This paper tackles the challenge of collaborative
control in multi-agent systems by introducing a motion control
strategy based on a hierarchical gene regulatory network (GRN)
model. At the GRN model’s upper layer, we define an influence
area for each agent, aiding them in making autonomous decisions
through the dynamics of these influence areas. The lower layer of
the GRN incorporates three core behavioral principles: obstacle
avoidance, aggregation, and co-directional movement, enabling
self-organized, coordinated movement in multi-agent settings.
The effectiveness of our approach is validated through exper-
imental simulations in two distinct environments: a forest and a
channel. The experimental results demonstrate the superiority of
the proposed method in these environments.

Index Terms—Multi-agent system, Gene regulatory network,
Self-organized motion

I. INTRODUCTION

In multi-agent systems, collaborative cooperation allows
each agent to perform complex tasks beyond their individual
capabilities [1], offering benefits in robustness, scalability,
and cost-effectiveness. Effective collaboration requires con-
sideration of local perception, decision-making, and control
mechanisms [2]. Researchers often look to natural biological
systems for inspiration in these areas. Current motion control
methods for multi-agent systems mainly include the artificial
potential field method, the virtual structure method, and the
leader-follower method.

The artificial potential field method, introduced by Khatib
[3], models interaction forces among agents using artificial
potential fields. Agents respond to attraction fields for desired
positioning and repulsion fields for obstacle avoidance. Wu

et al. developed an obstacle modeling method for complex
environments [4], reducing the impact of local minima issues.
However, this method requires complex strategies for bal-
ancing competition and collaboration in multi-objective tasks,
increasing task complexity. Sang et al. [4] proposed a multi-
objective artificial potential field method to prevent trapping
in local minima, incorporating task goal switching and path
planning. This method, however, faces difficulties in managing
agent motion in dynamic environments.

The virtual structure method treats a multi-agent system as a
single rigid body, with individual agent movements governed
by overarching rules. Abbasi et al. developed an improved
group control and fuzzy synchronization strategy based on this
concept [7]. This approach allows agents to synchronize using
precise position measurements, and visual sensors help prevent
collisions by assessing relative positions between agents. Zhou
et al. [6] applied a virtual structural framework to control a
quad-rotor UAV, enabling multi-agent motion control within
a local coordinate system. However, these methods typically
rely on centralized communication, which burdens the central
node and may compromise the system’s fault tolerance and
robustness.

In the leader-follower model, some agents act as leaders,
and the rest follow [8]. Followers maintain a constant offset
from the leader, who moves along a predefined trajectory.
Chen et al. [9] introduced a predictive performance control
strategy for a leader-follower motion control model that relies
on relative position data, ensuring coherence in the multi-agent
system. However, this model lacks feedback mechanisms,
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and a leader’s failure can have system-wide effects. Yang
improved the leader-follower model for better estimation of
relative distances and precise leader tracking by followers [10].
However, this method does not address obstacle avoidance for
the agents.

Acknowledging the limitations of the aforementioned ap-
proaches, this paper presents a new motion control method for
multi-agent systems, based on a hierarchical gene regulatory
network (GRN) model. In this model, the upper layer net-
work equips each agent with an influence area that integrates
environmental information, facilitating autonomous decision-
making. The lower layer network manages the agents’ move-
ments, ensuring the system’s integrity, preventing collisions
with obstacles, and enabling coordinated motion within the
multi-agent system.

The remainder of this paper is structured as follows: Section
II provides a detailed description of the proposed cooperative
motion control method with GRN model. Section III demon-
strates the effectiveness of our proposed model in various
scenarios. Finally, Section IV summarizes the findings and
conclusions of this work.

II. GENE REGULATORY NETWORK MODEL

In biology, GRN models are used to simulate the intricate
regulatory interactions among genes within a cell. These
models illustrate how the protein concentration produced by
one gene can activate or inhibit the expression of others. Such
interactive linkages create a complex network that regulates
gene expression in an organism, thereby influencing behaviors
and functions at the cellular level. Drawing inspiration from
this concept, this paper introduces a coordinated motion con-
trol method for multi-agent systems, utilizing the principles of
GRN models.

Fig. 1. Hierarchical GRN Model. Each intelligent agent is equipped with
a dual-layer GRN model, designed to facilitate both autonomous decision-
making and motion control. The model processes input data in the form of
the agent’s own protein concentration field, denoted as p1, and the protein
concentration fields of neighboring agents, denoted as p2.

The virtual protein concentration fields in a multi-agent
system are explained as follows. Each intelligent agent in the

system is analogous to a biological cell. The agent’s position
is represented as a concentration value, p1, within a virtual
protein concentration field, as shown in Fig. 1. The positions of
neighboring agents and obstacles are similarly converted into
concentration fields, labeled as p2. These fields are received
and processed by the agents. When neighbors or obstacles
fall within an agent’s sensing range, the concentration fields
p1 and p2 activate Genes Gen1 and Gen2, respectively. This
activation leads to the production of new concentration fields
p3 and p4. The combined effect of p3 and p4 drives the
expression of Gene Gen3, resulting in the creation of the
final concentration field M . Based on the final field M , the
agent determines its influence area and makes autonomous
decisions, drawing from the state information of this influence
area. The decision information is relayed to the lower layer
of the network, enabling the agent to adapt its motion in
response to the complexities of the environment. The proposed
GRN model features a two-layer structure. The following two
sections will delve into the specific functions and roles of each
layer within this framework.

A. The Upper Layer of the GRN

In the upper layer of the GRN, agents create a virtual
3D protein concentration field based on their location. They
assign specific concentration values to define their individual
influence areas, which are generally depicted as circles cen-
tered around each agent. When these agents receive positional
information about nearby agents and obstacles (considering
obstacle boundaries as equivalent to virtual agents), they cal-
culate their corresponding virtual concentration fields. These
calculated fields are then integrated into the upper layer of the
GRN. The process for determining the virtual concentration
field within the detection range is defined by the following
formula:

dpj
dt

= ∇2pj + γj − pj (1)

p =
N∑
j=1

pj (2)

In this framework, pj represents the concentration produced
by neighbors and obstacles, with j ranging from 1 to N ,
denoting the number of neighbors and obstacles within the
detection range. The expression dpj

dt
signifies the rate at which

the virtual concentration field changes over time t. Notably,
∇2 is the Laplacian operator which is used to model the spatial
diffusion of protein concentration. The term p encompasses the
overall concentration field, which is the sum of all neighboring
concentration fields.

As depicted in Figure 2, within the upper layer of the GRN
model, the concentration fields of agents and their neighbors
undergo gene regulation. This gene regulation modifies the
state of their respective influence areas. These alterations in
the state of the influence areas are then conveyed to the lower
layer of the network as input. Such modifications in the states
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(a) (b) (c) (d)

Fig. 2. Virtual protein concentration fields. (a). The concentration field of an agent. (b). The concentration fields of neighbors and obstacles. (c). The final
concentration field after gene regulation. (d). A 2D plane visualization of the final concentration field. In this representation, blue circles depict the agent’s
influence area, while a red line signifies areas where the influence is compressed or altered due to external factors.

of the influence areas enable autonomous decision-making by
the agents, thereby facilitating the self-organized, coordinated
movement of the entire multi-agent system. The formula for
this gene regulation is detailed below:

dp3
dt

= −p3 + sig(p1, θ1, k) (3)

dp4
dt

= −p4 + [1− sig (p2, θ2, k)] (4)

dM

dt
= −M + sig(p3 + p4, θ3, k) (5)

In this model, the agent’s concentration field p1 triggers
the expression of Gene Gen1, resulting in the generation of
concentration field p3. Simultaneously, the concentration field
p2, originating from neighboring agents, activates Gene Gen2,
creating concentration field p4. The final virtual concentration
field, represented as M , is produced by the combined effects
of p3 and p4. In this equation, θ and k serve as adjustment
parameters for the sigmoid function, with θ ranging from 0 to
1 and k from 0 to 2. In related research by Fan et al. [12],
genetic programming was used to automate the design of GRN
topology and the optimization of its structural parameters. As
shown in Figure 2(d), the agent’s influence area experiences
a compression-like transformation. Unlike traditional multi-
agent motion control models that depend on absolute dis-
tance information, this approach enables autonomous decision-
making through the morphological changes within the agent’s
influence area.

B. The Lower Layer of the GRN

In the lower layer of GRN model, the motion of agent
primarily involves three fundamental behavioral principles:
obstacle avoidance, aggregation, and co-directional motion.

1) Obstacle Avoidance: When agents are significantly dis-
tant from neighbors or obstacles, their influence area maintains
a circular shape, centered on the agent. However, as agents
get closer to neighbors or obstacles, genetic regulation leads
to deformations in their concentration field, which in turn
changes the shape of the influence area. To avoid collisions,
it is essential for agents to move in the direction opposite
to where the deformation occurs. The exact formula for this
process is detailed below:

vc =

Nk∑
k=1

uki ∗ (sig
(
dmin, d

ki
pt, k1

)
− 1) (6)

In this model, vc is defined as the velocity required for
collision avoidance. Nk represents the total number of points
within the agent’s influence area that are subject to compres-
sion. The term dmin indicates the shortest distance between
the agent’s influence area and any nearby entity, and it is set
to 1. dikpt refers to the distance from agent i to a specific
compressed point k within the influence area. The parameter
k1 serves as an adjustment factor in this context. Furthermore,
uki represents the direction for obstacle avoidance, which is
the directional vector leading from the compressed point k
within the influence area back to agent i.

2) Aggregation Motion: In situations where the influence
area state of the agents remains unchanged, maintaining the
multi-agent system’s overall integrity becomes crucial. We
define the maximum allowable distance between agents as
dmax and require that dmax be less than the agent’s sensor
range, which is set to 2 in this study. If the distance between
an agent and its nearest neighbors exceeds dmax, the agent
is obliged to adjust its position to be closer to its nearest
neighbor, while staying within the sensor’s range. The specific
formula for this adjustment is as follows:

va =

Nj∑
j=1

uij ∗ (sig
(
dijpt, dmax, k2

)
− 1) (7)

where va represents the aggregation velocity of an agent. Nj

indicates the number of neighbors within the sensing range of
the agent. dijpt refers to the distance between agent i and its
neighbor j. k2 is a tuning parameter in the system. uij denotes
the directional vector pointing from agent i to its neighbor j.

3) Co-directional Motion: To achieve synchronized move-
ment in the multi-agent system, a virtual leader is designated
at the forefront of the group. The agents follow the movement
pattern of this virtual leader. In cases where agents are unable
to detect the virtual leader directly, they are instructed to move
towards their nearest neighbor, thus ensuring cohesive, co-
directional motion throughout the system. The specific formula
governing this co-directional motion is as follows:
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Fig. 3. Motion process of the multi-agent system in a forest-like environment

vp = v ∗ uil (8)

where v represents the current velocity of the agent, and
uil = ui − ul denotes the directional vector from agent i to
the virtual leader l.

The proposed motion control model for the GRN lower
layer can be summarized as follows:

vf = vc + va + vp (9)

III. EXPERIMENTAL STUDY AND ANALYSIS

To evaluate the effectiveness of the MACM-GRN method
introduced in this study, we carried out experiments in two
distinct simulated settings: a forest-like environment and a
channel-like environment. We then compared the performance
of MACM-GRN with that of MACM-III [11].

A. Experimental Setup

The experimental environment is set up with dimensions of
50 × 50 m2, where 12 agents are randomly positioned in the
lower left quadrant of the area. The movement speed of these
agents is set at 0.25 m/s, and their sensor detection range is
3 m. Parameters for the upper layer of the GRN are defined
as follows: θ1=0.295, θ2=0.326, θ3=0.545, and k=1.

To evaluate the effectiveness of collaboration within the sys-
tem, a stability metric was introduced. This metric assesses the
system’s ability to maintain an organized state. The formula
for calculating this metric is given as:

fsta =

√∑N
i=1 (di − davg)

2

N
(10)

where N is the number of agents, di represents the distance
of agent i from the cluster’s centroid, and davg is the average
distance of all agents from the centroid. The parameter fsta
measures the dispersion of agent positions within the system,
with a lower value indicating higher system stability.

Additionally, for the effective operation of the proposed
control model, we assume that:

• The multi-agent system is equipped with GPS positioning
sensors, which enable agents to rapidly and accurately
obtain their own location data as well as the distance to
nearby neighbors or obstacles.

• Each agent has a limited communication range, allowing
for the exchange of positional and velocity information
with adjacent agents.
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B. Forest Environment
Figure 3 demonstrates the movement dynamics of a multi-

agent system using the MACM-GRN method within a sim-
ulated forest environment. In this environment, characterized
by dense and complex obstacles, the multi-agent system often
fragments into subgroups, which then regroup after success-
fully navigating the obstacles. This dynamic is evidenced in
Fig. 4, where we observe an initial increase in the system’s
stability during forest traversal, followed by a decrease in
stability after the agents have navigated past the obstacles.

In contrast, the MACM-III approach employs an artificial
potential field for obstacle avoidance and a virtual leader
to guide the co-directional movement of the group. While
effective in maintaining low system instability, MACM-III
tends to reach local optima in complex scenarios, which can
impede the completion of tasks. Fig. 4 further illustrates that
agents operating under MACM-III face challenges in finding
an exit in environments surrounded by obstacles, highlighting
the limitations of this approach in more intricate settings.

Fig. 4. Stability indicators of MACM-GRN and MACM-III methods in the
simulated forest environment

C. Channel Environment
Figure 6 depicts the trajectory of a multi-agent system

navigating through a channel environment. Initially positioned
at the channel’s entrance, the agents are tasked with moving
towards the upper right corner to exit. The figure clearly shows
that the multi-agent system manages to navigate the channel
successfully, reaching their destination without any collisions.

Fig. 5 presents the stability value change curve for the
MACM-GRN method. This curve reveals an increase in the
system’s stability during the initial time steps (0-100), a period
when the agents are maneuvering around the channel’s corner.
The change in the environment contributes to this increase
in stability. Subsequently, as the agents enter the straight
portion of the channel, the system’s stability value becomes
more consistent, as indicated in Figs. 6(a) to 6(c). A notable
resurgence in stability is observed between time steps 200-
300, attributed to the channel’s corners becoming narrower,
yet the system’s stability soon stabilizes once more.

Compared to the MACM-III method, our approach demon-
strates improved system stability. This is particularly evident
during the navigation of channel corners and in straight chan-
nel segments, indicating that the MACM-GRN method better
adapts to varying environmental conditions and maintains a
more stable configuration of the multi-agent system.

Fig. 5. Stability indicators of MACM-GRN and MACM-III methods in
simulated channel environment

IV. CONCLUSION

This paper introduces a novel control model for multi-
agent systems, inspired by GRNs, designed to facilitate self-
organized, coordinated motion in complex environments. Our
approach begins with an exploration of the structure and
function of GRNs, applying these principles to enable au-
tonomous decision-making and motion control in intelligent
agents. We then validate the efficacy of this control method
within multi-agent systems. The results of the simulation
experiments demonstrate that the controller, grounded in the
GRN model, is highly effective and adaptable, successfully
achieving coordinated motion control in multi-agent Systems.
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