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Abstract—Many real-world optimization problems can be for-
mulated as a kind of constrained multi-objective optimization
problems (CMOPs). The main difficulty in solving these problems
is to take feasibility, convergence and diversity into account
simultaneously. To address this issue, this paper proposes a
push and pull search algorithm based on early convergence
followed by diversity (PPS-CFD). The proposed algorithm is
composed of three different stages, each respectively focusing
on convergence, diversity and feasibility. In the first stage, the
population rapidly converges to the unconstrained Pareto front
(UPF) in M directions, where M is the number of objectives of
CMOPs. In the second stage, the population further converges to
the UPF and meanwhile its diversity is enhanced. In the last stage,
constraints are taken into account to pull the population from the
UPF to the constrained Pareto front (CPF). In addition, a search
strategy based on objective space division is proposed at the last
two stages. Finally, the proposed PPS-CFD is tested on fourteen
benchmark problems, compared with other six algorithms, to
demonstrate its superiority.

Index Terms—Constrained multi-objective optimization, push
and pull search framework, objective space division.

I. INTRODUCTION

Constrained multi-objective optimization problems
(CMOPs) widely exist in real-world optimization [1]–
[3]. These problems contain several conflicting objectives
with a number of constraints, which are hard to solve with
traditional ways. Constrained multi-objective evolutionary
algorithms (CMOEAs) are effective methods to solve CMOPs.
However, the solving procedure might be difficult due to the
three challenges [4] listed below:
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1) Feasibility challenge. Constraints might create many
infeasible regions in the objective space, potentially pre-
venting an algorithm from finding any feasible solutions.

2) Convergence challenge. The infeasible regions might
block the population’s path to converge towards the CPF.

3) Diversity challenge. The infeasible regions might divide
the CPF into some discrete fragments, making an algo-
rithm difficult to find all the fragments simultaneously.

To address these challenges, Fan et al. [5] proposed a push
and pull search (PPS) framework, which is able to cross large
infeasible regions. Nevertheless, it has no special mechanisms
to enhance the performance of diversity and convergence.
This paper proposes a push and pull search algorithm based
on early convergence followed by diversity (PPS-CFD). The
contributions are summarized as follows:

1) A method for quick convergence is proposed. A multi-
objective optimization problem (MOP) without con-
straints is divided into M single-objective optimization
problems (SOPs), where M is the number of objectives
of the MOP, making the population converge faster
toward the UPF along M directions compared to tra-
ditional decomposition methods.

2) A method to enhance the diversity is proposed. The
objective space of an MOP is divided into multiple
regions and some regions without any feasible solutions
are removed timely to enhance the search efficiency.

3) By combining the above two mechanisms in the PPS
framework, the population can get across infeasible
regions and the search performance can be improved
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significantly.
The remainder of this work is organized as follows. Section

II introduces related work of CMOEAs. Section III describes
the proposed PPS-CFD in detail. Section IV gives experimen-
tal results and analyzes the advantages of the proposed method.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

Among various existing CMOEAs, algorithms based on
multi stages or cooperative population have demonstrated their
effectiveness in balancing constraints and objectives. As for
multi-stage CMOEAs, Fan et al. [5] proposed a push and pull
search (PPS) framework, in which the evolutionary procedure
is segmented into two stages. In the push stage, the population
crosses large infeasible regions and converges toward the
UPF by discarding constraints. In the pull stage, a constraint
handling technique named improved epsilon method is applied
to pull the population from the UPF to the CPF gradually. PPS
has provided a novel idea to overcome the search difficulty
caused by large infeasible regions, and much work has been
done around it. Then, a multi-objective to multi-objective
(M2M) decomposition strategy was embedded into PPS [6] to
further enhance the diversity. Sun et al. [7] proposed a three-
stage CMOEA to solve multi-constraint CMOPs. Initially, the
algorithm searches for the UPF without constraints. Then,
constraints are added one by one to gradually increase the
complexity. Zou et al. [8] proposed a two-stage CMOEA with
adaptive adjustment, where a fast global search is performed
at the first stage and a mechanism with dynamic resource
allocation between exploration and convergence is employed
at the last stage.

Regarding multi-population cooperation CMOEAs, Tian et
al. [9] designed a weak coevolutionary framework, where
an assistant population is evolved with partial objectives or
constraints to assist the main population. Liu et al. [10]
constructed two other assistant populations to generate es-
cape and expansion forces, which can avoid main population
trapped into local feasible regions. Liang et al. [11] use
information from cooperative populations to predict the type
of a problem, which determines the subsequent evolutionary
strategy accordingly.

The above-mentioned CMOEAs have similar ideas, i.e.
using the information with simplified constraints or no con-
straints to help solve the original CMOPs. Information from
high quality infeasible solutions is employed to enhance the
convergence toward CPFs.

III. PROPOSED METHOD

The proposed PPS-CFD includes three stages as illustrated
in Algorithm 1 and Fig. 1. The first stage disregards constraints
and makes the population converge rapidly toward the UPFs
in M directions by decomposition technique. The second
stage continues to dismiss constraints and the original MOP
is optimized to further improve the convergence and diversity.
In the last stage, constraints are taken into account to guide
the population toward the CPFs.

Fig. 1. Procedure of PPS-CFD. There are three different search stages which
focus on convergence, diversity and feasibility, respectively.

Algorithm 1: Procedure of PPS-CFD
Input: population size N , subpopulation size subN ,

objective dimension M
Output: population P

1 P ← randomly generate N individuals;
// stage 1

2 P ← SolveDecomposedProblem(P, subN);
// stage 2

3 flag ← 0; // ignoring constraints
4 P ← RegionBasedEvolution(P,N, flag);
// stage 3

5 flag ← 1; // considering constraints
6 P ← RegionBasedEvolution(P,N, flag);

A. Stage One

This stage is dedicated to bolstering the convergence of the
proposed PPS-CFD, with its pseudocode outlined in Algorithm
2. We assume that the early stages of evolution necessitate
a rapid convergence of the population towards the UPFs,
disregarding the distribution and feasibility of the population.
Optimizing multiple objectives simultaneously might pose a
challenge for achieving convergence. To mitigate this, we
decompose the original M -objective problem into M single-
objective subproblems. For each objective, a one-hot weight
vector is constructed. For instance, when M = 2, weight vec-
tors are assigned as (1,0) and (0,1). Each subproblem employs
the penalty-based boundary intersection (PBI) function [12] as
its objective function, defined as follows:

min gpbi(x,W, z) = d1 + θd2

d1 = ∥(z−F(x))TW∥
∥W∥

d2 = ∥F(x)− (z− d1W)∥
(1)

where x is the decision vector, W is the weight vector, z
is the reference point and θ is the penalty factor.

For each subproblem, we select subN solutions from popu-
lation P that have the minimum PBI values, which then form
the initial population subP . Following this, a single-objective
evolutionary algorithm (SOEA) optimizes subP until stability
is achieved, meaning no further individual replacements occur.
We have chosen NL-SHADE-LBC [13] as the optimizer for
this process due to its ability to adaptively adjust the param-
eters of the differential evolution (DE) operator. Importantly,
depending on the specific characteristics of the subproblem,
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Algorithm 2: SolveDecomposedProblem
Input: population P , subpopulation size subN
Output: population P

1 offspring ← ∅;
2 for i← 1 to M do
3 W ← construct weight vector for the ith objective;
4 pbi← calculate PBI value of P by equation (1);
5 subP ← select subN solution from P with

minimum pbi;
6 repeat
7 subP ← optimize subP with SOEA for 1

generation;
8 until subP is stable;
9 best← select the best solution from subP ;

10 offspring ← offspring ∪ best
11 end
12 offspring ← add normally distributed disturbance to

offspring;
13 P ← select N best solution from P ∪ offspring by

non-dominated sorting;

Fig. 2. The effect of disturbance where M = 2. The red dot and the blue
dot stand for single-objective optimal solutions. With disturbance added, new
solutions is generated in nearby area shown as red circle and blue circle.

a different SOEA could be used to potentially yield superior
performance.

While the above-mentioned decomposition approach can
hasten convergence, it may inadvertently lead to local conver-
gence. To counteract this, we construct a new population de-
rived from these optimal subP s to amplify diversity. Initially,
we select an optimal solution from each subP respectively.
Subsequently, we introduce a normally distributed disturbance
to these selected solutions, thereby generating additional solu-
tions in close proximity. The effect of this disturbance, where
M = 2, is illustrated in Fig. 2. Ultimately, from both the initial
population and the generated solutions, we select N solutions
to constitute the new population for the second stage.

B. Stage Two

Following the first stage, the population has already con-
verged as close as possible to the UPFs. Stage 2 then fur-
thers this convergence and enhances diversity through multi-
objective optimization, with constraints discarded. The pseu-

Algorithm 3: RegionBasedEvolution
Input: population P , population size N , constraint

status flag flag
Output: population P

1 W ← generate N weight vector uniformly;
2 Region← divided objective space according to W ;
3 gen← 0;
4 DR← floor(N/10); // detection range for

Algorithm5
5 while termination criterion is not fulfilled do
6 Region← associate P with region;
7 for i← 1 to |Region| do
8 parent← select parent from Region(i)

randomly;
9 offspring ← generate an offspring with

parent by DE and PM;
10 P ← P ∪ offspring;
11 end
12 P ←

EnvironmentalSelection(P,N,Region, flag);
13 gen← gen+ 1;
14 if HV of P is almost unchanged then
15 if flag == 0 then
16 break;
17 else
18 Region←

UpdateRegion(P,N,Region,DR);
19 DR← floor(DR/2);
20 DR← max(DR,M + 1);
21 end
22 end
23 end

docode is exhibited in Algorithm 3, where the input parameter
flag is set to 0, signifying the discarding of constraints.

Initially, the objective space is divided into N regions, each
associated with one of the N uniformly generated weight
vectors. And all solutions are associated with regions based
on their distance to respective weight vectors. The parent
solutions are randomly selected from each region. If a region
does not have enough solutions, neighboring regions and then
the entire regions are considered. Following this, a combi-
nation of the DE operator and polynomial mutation (PM)
is utilized for reproduction. Subsequently, an environmental
selection strategy is suggested to select N solutions for the
next generation. An adaptive stage-switch mechanism is devel-
oped. Specifically, when the HV [14] value of the population
experiences negligible changes, the evolution of stage 2 is
deemed complete.

Algorithm 4 presents the environmental selection strategy
referenced in Algorithm 3. We design a novel environmental
selection approach using the Constrained Dominance Principle
(CDP) [15] and region division. The primary aim of this
approach is to maintain the minimum number of solutions
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Algorithm 4: EnvironmentalSelection
Input: population P , population size N , objective

space region Region, constraint status flag
flag

Output: population P
1 avg ← floor(N/|Region|);
2 worstSet← ∅;
3 for i← 1 to |Region| do
4 amount← get the amount of solutions in

Region(i);
5 if amount > avg then
6 if flag == 0 then
7 worst← select amount− avg worst

solutions from Region(i) by
non-dominated sorting;

8 else
9 worst← select amount− avg worst

solutions from Region(i) by constrained
non-dominated sorting;

10 end
11 worstSet← worstSet ∪ worst;
12 end
13 end
14 if flag == 0 then
15 worstSet← select |P | −N worst solutions from

worstSet by non-dominated sorting;
16 else
17 worstSet← select |P | −N worst solutions from

worstSet by constrained non-dominated sorting;
18 end
19 P ← P − worstSet;

in each region. The minimum quantity, denoted as avg, is
defined as the smallest number of solutions in a region when
the population is uniformly distributed across all regions. If
a region contains more than avg solutions, the excess worst
solution, as determined by the CDP method, is added to
worstSet. Once all regions have been assessed, the worst
solution in worstSet is eliminated until only N solutions
remain in the population.

C. Stage Three

Upon completion of the second stage, the population nearly
converges to the UPFs with a robust diversity. Stage 3 aims
to draw the population from the UPFs to the CPFs, taking
constraints into account. The pseudocode is exhibited in Al-
gorithm 3 in a similar manner, where the input parameter flag
is set to 1 to denote the consideration of constraints. The key
differences between stages 2 and 3 can be itemized as follows:

1) Regarding environmental selection, non-dominated sort-
ing is applied in stage 2 (refer to Line 7 and 15
in Algorithm 4), whereas constrained non-dominated
sorting is applied in stage 3 (refer to Line 9 and 17
in Algorithm 4).

2) Pertaining to operations when the population is relatively
stable, the current stage is considered complete in stage
2 (refer to Line 16 in Algorithm 3), while regions are
updated in stage 3 (refer to Line 18 in Algorithm 3).

Algorithm 5: UpdateRegion
Input: population P , population size N , objective

space region Region, detection range DR
Output: objective space region Region

1 best← get feasible and non-dominated solution;
2 if |best| < N/2 then
3 best← get floor(N/2) best solution by

constrained non-dominated sorting;
4 end
5 del← ∅;
6 for i← 1 to |Region| do
7 B ← get the nearest DR region to Region(i);
8 if B ∩ best == ∅ then
9 del← del ∪Region(i);

10 end
11 end
12 Region← Region− del;
13 Region← associate P with Region;

The region update mentioned earlier is intended to eliminate
regions that are unlikely to contain any solutions on the CPFs,
thus concentrating computing resources on promising regions.
The pseudocode for this process is illustrated in Algorithm
5. Initially, if more than half solutions in the population are
feasible and non-dominated, these solutions are stored in a set
denoted as best. If not, constrained non-dominated sorting is
applied to select half of the population to form the set best.
Subsequently, all regions that do not contain any solutions
from the best set within their closest DR regions (including
the regions themselves) is identified. These regions are likely
devoid of any CPFs and are thus eliminated by deleting their
respective weight vectors.

It is necessary to note that this update procedure only occur
in the case of the population is nearly stable. Moreover, if
a region contains solutions on the CPFs, it may suggest that
its neighboring region also houses non-dominated solutions
on the CPFs. To bolster the search capability at the CPF’s
edge, we establish a detection range, DR, to preserve these
neighboring regions. Initially, DR is set to N/10 and is
halved with each region update. As DR diminishes, regions
lacking any solutions on the CPFs will be progressively
eliminated, thereby concentrating computing resources in the
most promising regions.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

The proposed PPS-CFD is compared with six other
CMOEAs, namely NSGA-II [15], C-MOEA/D [16], MOEA-
DD [17], PPS [5], MTCMO [18], and CCMO [9]. These
algorithms are tested on the LIR-CMOP [19] benchmark suite,
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Fig. 3. Results achieved by each algorithms on LIRCMOP3. Blue solid lines represent CPF, red dots represent feasible and non-dominated solutions, and
white areas represent infeasible regions.

Fig. 4. Results achieved by each algorithms on LIRCMOP7. Blue solid lines represent CPF, red dots represent feasible non-dominated solutions, white areas
represent infeasible regions, and gray areas represent feasible regions.
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TABLE I
IGD RESULTS OF PPS-CFD AND THE OTHER SIX CMOEAS ON LIR-CMOP1-LIR-CMOP14. THE TERMS ’+’, ’-’ AND ’=’ INDICATE THAT THE RESULT

IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE OR STATISTICALLY SIMILAR TO THE RESULTS OBTAINED BY PPS-CFD, RESPECTIVELY. THE BEST
RESULT ON EACH PROBLEM IS HIGHLIGHTED IN GRAY.

Problem M D NSGA-II C-MOEA/D MOEA-DD PPS MTCMO CCMO PPS-CFD

LIRCMOP1 2 30 mean 2.5984E-1 2.7302E-1 1.5160E-1 7.7559E-3 9.1523E-2 1.6552E-1 3.22E-03
(std) (2.24E-02) - (3.19E-02) - (8.20E-02) - (4.13E-03) - (1.77E-02) - (4.08E-02) - (9.75E-04)

LIRCMOP2 2 30 mean 2.2314E-1 2.3326E-1 1.1438E-1 5.1129E-3 7.8331E-2 1.8079E-1 2.40E-03
(std) (2.01E-02) - (2.25E-02) - (3.22E-02) - (7.16E-04) - (1.15E-02) - (3.45E-02) - (5.09E-04)

LIRCMOP3 2 30 mean 2.7717E-1 2.9934E-1 1.2348E-1 4.3940E-3 9.7608E-2 1.9989E-1 2.65E-03
(std) (4.07E-02) - (4.02E-02) - (3.79E-02) - (5.97E-04) - (2.10E-02) - (4.71E-02) - (1.81E-03)

LIRCMOP4 2 30 mean 2.4605E-1 2.7176E-1 1.3256E-1 3.7818E-3 1.1648E-1 2.1699E-1 2.06E-03
(std) (2.91E-02) - (3.16E-02) - (2.40E-02) - (4.61E-04) - (1.67E-02) - (3.67E-02) - (4.06E-04)

LIRCMOP5 2 30 mean 1.2149E+0 1.2190E+0 1.2060E+0 2.3271E-3 7.3889E-1 2.7224E-1 2.08E-03
(std) (6.45E-03) - (5.76E-03) - (1.14E-02) - (1.31E-04) - (4.53E-01) - (4.94E-02) - (5.49E-05)

LIRCMOP6 2 30 mean 1.3447E+0 1.3449E+0 1.3531E+0 2.6975E-3 8.2768E-1 2.6607E-1 2.21E-03
(std) (7.16E-05) - (1.32E-04) - (2.37E-03) - (1.61E-04) - (4.66E-01) - (6.50E-02) - (5.96E-05)

LIRCMOP7 2 30 mean 3.3287E-1 8.1164E-1 7.1079E-1 1.4360E-2 1.1114E-1 1.0154E-1 2.97E-03
(std) (5.38E-01) - (7.73E-01) - (7.62E-01) - (2.82E-02) - (2.84E-02) - (2.72E-02) - (8.44E-05)

LIRCMOP8 2 30 mean 8.5152E-1 1.4588E+0 9.0607E-1 6.3636E-2 1.5714E-1 1.5304E-1 2.93E-03
(std) (7.38E-01) - (5.10E-01) - (7.08E-01) - (1.30E-01) - (3.71E-02) - (4.30E-02) - (1.47E-04)

LIRCMOP9 2 30 mean 9.4682E-1 7.7600E-1 6.6036E-1 3.5062E-1 6.4571E-1 4.2881E-1 6.79E-02
(std) (8.42E-02) - (1.61E-01) - (1.61E-01) - (8.78E-02) - (1.39E-01) - (1.39E-01) - (1.06E-01)

LIRCMOP10 2 30 mean 8.6221E-1 4.8466E-1 4.0393E-1 5.8543E-2 5.3437E-1 1.3216E-1 2.48E-03
(std) (5.37E-02) - (2.33E-01) - (5.00E-02) - (9.72E-02) - (2.82E-01) - (4.85E-02) - (6.75E-05)

LIRCMOP11 2 30 mean 7.3212E-1 7.7799E-1 6.1257E-1 1.9927E-1 3.6320E-1 5.4289E-2 2.41E-03
(std) (8.20E-02) - (1.16E-01) - (1.44E-01) - (1.21E-01) - (1.39E-01) - (2.80E-02) - (6.99E-05)

LIRCMOP12 2 30 mean 6.8136E-1 5.0015E-1 2.6502E-1 1.2325E-1 3.0299E-1 2.0574E-1 3.08E-03
(std) (1.49E-01) - (1.38E-01) - (3.65E-02) - (1.69E-02) - (8.62E-02) - (7.24E-02) - (1.59E-04)

LIRCMOP13 3 30 mean 1.3084E+0 1.2983E+0 1.3250E+0 7.1860E-2 1.3039E+0 5.2736E-2 9.59E-02
(std) (8.08E-04) - (1.44E-04) - (3.00E-03) - (1.61E-03) + (5.24E-04) - (3.54E-04) + (2.63E-03)

LIRCMOP14 3 30 mean 1.2647E+0 1.2542E+0 1.2813E+0 6.7209E-2 1.2598E+0 5.4786E-2 7.49E-02
(std) (9.34E-04) - (1.67E-04) - (2.70E-03) - (1.26E-03) + (4.81E-04) - (4.39E-04) + (1.60E-03)

Wilcoxon’s rank sum test(+/-/=) 0/14/0 0/14/0 0/14/0 2/12/0 0/14/0 2/12/0

known for its large infeasible regions that present considerable
challenges to CMOEAs. For comparative purposes, we select
IGD [20] and HV [14] as performance indicators. All experi-
ments are conducted using PlatEMO [21].

The experimental parameter settings are as follows:
1) The population size N is set to 300, and the maximum

evaluation is set to 300,000. Each algorithm is run 30
times independently.

2) For the proposed PPS-CFD, the subpopulation size is set
to 100. The parameters for the embedded NL-SHADE-
LBC [13] are set refer to the recommendations in the
original paper.

3) For the test problems and the other algorithms compared,
the parameters are also set according to their original
papers.

B. Experimental Results

Table I presents the IGD results of PPS-CFD and the
other six CMOEAs on LIR-CMOP1-14, while Table II depicts
the corresponding HV results. Each metric is represented by
both its mean value and standard deviation, with the best
mean values highlighted in gray with a bold font. Moreover,
we employ Wilcoxon’s rank-sum test to identify significant
differences.

The experimental results indicate that PPS-CFD signif-
icantly outperforms the other six comparison CMOEAs,

achieving the optimal outcomes on most of the test problems.
Specifically, PPS-CFD demonstrates substantial advantages on
test problems with extremely narrow feasible regions (LIR-
CMOP1-4), achieving the best results across all metrics. For
test problems in which the CPFs are obstructed by numerous
infeasible regions (LIRCMOP5-12), PPS-CFD also secures
the majority of the top results, falling short only once when
compared with PPS.

The superiority of PPS-CFD can be ascribed to the follow-
ing factors:

1) The early stages of evolution disregard constraints, al-
lowing the population to traverse substantial infeasible
regions and converge towards the UPFs.

2) Single-objective optimization for decomposed subprob-
lems in stage 1 effectively accelerates the early conver-
gence.

3) The proposed search strategy, based on region division,
ensures good diversity. Coupled with the proposed re-
gion update mechanism, computing resources are fo-
cused on potential regions containing Pareto optimal
solutions, significantly enhancing search efficiency.

To further demonstrate the superiority of PPS-CFD, we
showcase the optimal solutions obtained by each algorithm
on LIR-CMOP3 and LIR-CMOP7, respectively shown in
Fig. 3 and Fig. 4. LIR-CMOP3 is a problem characterized
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TABLE II
HV RESULTS OF PPS-CFD AND THE OTHER SIX CMOEAS ON LIR-CMOP1-LIR-CMOP14. THE TERMS ’+’, ’-’ AND ’=’ INDICATE THAT THE RESULT
IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE OR STATISTICALLY SIMILAR TO THE RESULTS OBTAINED BY PPS-CFD, RESPECTIVELY. THE BEST

RESULT ON EACH PROBLEM IS HIGHLIGHTED IN GRAY.

Problem M D NSGA-II C-MOEA/D MOEA-DD PPS MTCMO CCMO PPS-CFD

LIRCMOP1 2 30 mean 1.2449E-1 1.2055E-1 1.6238E-1 2.3685E-1 1.8326E-1 1.5538E-1 2.39E-01
(std) (7.02E-03) - (1.08E-02) - (2.74E-02) - (1.34E-03) - (8.69E-03) - (1.62E-02) - (1.79E-04)

LIRCMOP2 2 30 mean 2.4317E-1 2.3897E-1 2.9733E-1 3.6024E-1 3.1486E-1 2.6399E-1 3.62E-01
(std) (8.74E-03) - (1.04E-02) - (1.55E-02) - (3.94E-04) - (6.70E-03) - (1.81E-02) - (2.01E-04)

LIRCMOP3 2 30 mean 1.0926E-1 1.0346E-1 1.5599E-1 2.0592E-1 1.6637E-1 1.3156E-1 2.09E-01
(std) (1.05E-02) - (1.23E-02) - (1.27E-02) - (4.78E-04) - (7.62E-03) - (1.55E-02) - (3.24E-04)

LIRCMOP4 2 30 mean 2.1099E-1 2.0032E-1 2.5903E-1 3.1512E-1 2.6551E-1 2.2244E-1 3.17E-01
(std) (1.31E-02) - (1.38E-02) - (1.08E-02) - (3.95E-04) - (8.60E-03) - (1.61E-02) - (3.22E-04)

LIRCMOP5 2 30 mean 0.0000E+0 0.0000E+0 0.0000E+0 2.9350E-1 7.7917E-2 1.6403E-1 2.94E-01
(std) - (0.00E+00) - (0.00E+00) - (0.00E+00) - (5.65E-05) = (7.56E-02) - (1.89E-02) - (2.73E-05)

LIRCMOP6 2 30 mean 0.0000E+0 0.0000E+0 0.0000E+0 1.9883E-1 5.4545E-2 1.2387E-1 1.99E-01
(std) (0.00E+00) - (0.00E+00) - (0.00E+00) - (4.52E-05) + (4.98E-02) - (1.26E-02) - (3.24E-05)

LIRCMOP7 2 30 mean 2.1381E-1 1.3759E-1 1.5461E-1 2.9104E-1 2.5087E-1 2.5363E-1 2.96E-01
(std) (8.57E-02) - (1.23E-01) - (1.21E-01) - (1.17E-02) - (8.41E-03) - (8.58E-03) - (9.82E-05)

LIRCMOP8 2 30 mean 1.2864E-1 3.1766E-2 1.1921E-1 2.8068E-1 2.4125E-1 2.4125E-1 2.96E-01
(std) (1.15E-01) - (7.56E-02) - (1.10E-01) - (2.64E-02) = (9.12E-03) - (1.01E-02) - (1.18E-04)

LIRCMOP9 2 30 mean 1.2776E-1 2.1115E-1 2.5219E-1 4.6107E-1 2.7916E-1 3.9664E-1 5.47E-01
(std) (3.19E-02) - (8.36E-02) - (1.05E-01) - (3.14E-02) - (8.21E-02) - (6.32E-02) - (3.15E-02)

LIRCMOP10 2 30 mean 9.8546E-2 3.8833E-1 4.8709E-1 6.8173E-1 3.4458E-1 6.3452E-1 7.08E-01
(std) (3.03E-02) - (1.69E-01) - (2.43E-02) - (4.77E-02) = (2.16E-01) - (2.49E-02) - (7.94E-05)

LIRCMOP11 2 30 mean 2.3351E-1 2.4701E-1 3.2214E-1 5.7022E-1 4.7464E-1 6.7094E-1 6.94E-01
(std) (4.35E-02) - (7.79E-02) - (1.17E-01) - (7.84E-02) - (1.01E-01) - (1.04E-02) - (5.31E-05)

LIRCMOP12 2 30 mean 3.0449E-1 4.2912E-1 5.0194E-1 5.6749E-1 4.8191E-1 5.2030E-1 6.20E-01
(std) (8.86E-02) - (5.85E-02) - (1.86E-02) - (7.51E-03) - (3.92E-02) - (3.88E-02) - (3.25E-05)

LIRCMOP13 3 30 mean 2.6536E-4 5.5845E-4 1.1586E-4 5.5527E-1 3.9237E-4 5.7731E-1 5.34E-01
(std) (1.85E-04) - (2.21E-05) - (1.27E-04) - (2.64E-03) + (1.38E-04) - (4.55E-04) + (2.02E-03)

LIRCMOP14 3 30 mean 1.0623E-3 1.5981E-3 3.7219E-4 5.6485E-1 1.4204E-3 5.7569E-1 5.54E-01
(std) (3.82E-04) - (2.56E-05) - (3.59E-04) - (2.14E-03) + (2.09E-04) - (4.67E-04) + (1.61E-03)

Wilcoxon’s rank sum test(+/-/=) 0/14/0 0/14/0 0/14/0 3/8/3 0/14/0 2/12/0

by extremely narrow feasible regions and a discrete CPF,
presenting a considerable challenge for convergence, diversity,
and feasibility. As shown in Fig. 3, only PPS-CFD manages to
converge to all segments of the CPF and covers all fragments
uniformly. LIR-CMOP7, on the other hand, is a problem in
which the CPF is obstructed by a large number of infeasible
regions, demanding a strong ability from CMOEAs to traverse
infeasible areas. As illustrated in Fig. 4, all solutions from C-
MOEA/D and some solutions from MOEA-DD and CCMO
are stuck far away from the CPF. Among the other four
CMOEAs, PPS-CFD exhibits the best diversity, covering the
entire CPF uniformly.

V. CONCLUSION

This paper introduces a three-stage CMOEA, dubbed PPS-
CFD. In the first stage, constraints are disregarded and the
original MOP is decomposed into several SOPs. This acceler-
ates the convergence towards the UPFs in specific directions.
In the second stage, constraints continue to be disregarded as
the original MOP is processed for further convergence and di-
versity enhancement. An evolutionary strategy centered around
region division is implemented to ensure robust diversity.
During the third stage, constraints are considered to transition
the population from the UPFs toward the CPFs. Additionally,
a region update mechanism is proposed to eliminate regions
devoid of the CPFs and to concentrate computational resources

on promising regions. Compared to the original PPS, our
proposed PPS-CFD demonstrates superior performance in both
convergence and diversity. Experimental comparisons with six
other CMOEAs on a benchmark test suite further solidify the
superiority of PPS-CFD.
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