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Abstract
Design automation is a core technology in industrial design software and an important branch of knowledge-worker
automation. For example, electronic design automation (EDA) has played an important role in both academia and
industry. Design automation for intelligent robots refers to the construction of unified modular graph models for the
morphologies (body), controllers (brain), and vision systems (eye) of intelligent robots under digital twin
architectures, which effectively supports the automation of the morphology, controller, and vision system design
processes of intelligent robots by taking advantage of the powerful capabilities of genetic programming,
evolutionary computation, deep learning, reinforcement learning, and causal reasoning in model representation,
optimization, perception, decision making, and reasoning. Compared with traditional design methods, MOdular
DEsigN Automation (MODENA) methods can significantly improve the design efficiency and performance of robots,
effectively avoiding the repetitive trial-and-error processes of traditional design methods, and promoting automatic
discovery of innovative designs. Thus, it is of considerable research significance to study MODENA methods for
intelligent robots. To this end, this paper provides a systematic and comprehensive overview of applying MODENA in
intelligent robots, analyzes the current problems and challenges in the field, and provides an outlook for future
research. First, the design automation for the robot morphologies and controllers is reviewed, individually, with
automated design of control strategies for swarm robots also discussed, which has emerged as a prominent research
focus recently. Next, the integrated design automation of both the morphologies and controllers for robotic systems
is presented. Then, the design automation of the vision systems of intelligent robots is summarized when vision
systems have become one of the most important modules for intelligent robotic systems. Then, the future research
trends of integrated “Body-Brain-Eye” design automation for intelligent robots are discussed. Finally, the common key
technologies, research challenges and opportunities in MODENA for intelligent robots are summarized.
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1 Introduction
Robots are widely used in industrial manufacturing, agri-
cultural production, services, and defense to help people
perform repetitive, heavy, or dangerous tasks [1]. However,
in the case of complex and dynamic tasks and environ-
ments, robots without intelligence are unable to respond
to changes in a correct and timely manner. Therefore, em-
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powering robots with intelligence constitutes an impor-
tant research trend [2, 3]. Intelligent robots combine arti-
ficial intelligence (AI) technology with robotics to produce
an autonomous system with intelligence. These systems
can learn and respond to dynamic requirements and en-
vironmental changes via machine learning, image recog-
nition, target detection, and other AI techniques, rather
than simply executing pre-defined commands. The main
modules that affect how a robot functions as an intelligent
machine include the morphology, the controller, and the
vision perception system, which are analogous to the hu-
man body, brain, and eyes, respectively. Therefore, in the
design automation of intelligent robotic systems, our work
aims at developing an automated design methodology for
the “Body-Brain-Eye” of intelligent robots.

With the emergence of advanced technologies such as
deep learning, evolutionary computing, machine learning,
intelligent control, and robotics, the study of design au-
tomation for intelligent robots has received significant at-
tention from scholars [4, 5], which is also considered to be
an important branch of knowledge-worker automation [6].
In this paper, we systematically provide a detailed explana-
tion of the main concept of modular design automation. In
general, modular design automation (MODENA) refers to
an approach that decomposes the overall design process of
an intelligent robot system into multiple relatively simple
and independent functional modules. Each module can be
modeled as a unified graph model, which facilitates the op-
timization of the design. This enables the automatic design
and combination of modules. In particular, MODENA for
intelligent robots refers to the decomposition of the mor-
phology (body) [7], controller (brain) [8], and vision sys-
tem (eyes) [9] of an intelligent robot into some indepen-
dent and interpretable graphical modular units in a digi-
tal twin architecture. Then, with the help of artificial in-
telligence technologies such as genetic programming [10],
evolutionary computation [11], deep learning [12], rein-
forcement learning [13], and causal reasoning [14], these
modular units are combined automatically, and the evolu-
tion of combination rules is performed. Through this ap-
proach, the design process of intelligent robots can be au-
tomated. During the design automation process, it is no-
table that the system that is automatically discovered can
be constructed into a new modular unit and added to the
module library. This new modular unit can then be utilized
in a closed-loop design automation process, allowing for
systematical and continuous improvement in the perfor-
mance of the intelligent robot system. Compared with tra-
ditional design methods, the MODENA method can sig-
nificantly improve the design efficiency and performances
of intelligent robots, by promoting the generation of inno-
vative designs not limited by the experiences and intuitions
of human designers, and the repetitive trial-and-error pro-
cesses and laborious routine tasks to be conducted by tra-
ditional design methods.

The proposed MODENA approach (see Fig. 1) has re-
ceived increasing academic attention in recent decades.
It applies a constrained multi-objective genetic program-
ming method to automatically generate and evolve the
topologies and parameters of graph models (e.g., bond
graph, finite state machine, gene regulatory network, deep
neural network, and Bayesian network). In this way, the de-
sign rules of intelligent robots can be constructed to gen-
erate robots with high performance. To efficiently solve
the multi-objective programming problem, two key tech-
niques, i.e., constrained multi-objective evolutionary al-
gorithms and genetic programming methods, are simul-
taneously applied to optimize the topology and parame-
ters of an arbitrary graph structure. Specifically, the con-
strained multi-objective evolutionary algorithm can effi-
ciently solve multiple conflicting objectives with various
types of constraints and a large number of discrete or con-
tinuous variables. Genetic programming is used to search
for optimization of the topologies and internal parame-
ters of graph models, which can obtain models with inno-
vative optimized structures that perform well in specific
aspects. To effectively represent the target object with an
appropriate graph model according to its characteristics,
we applied different types of graph models for various in-
telligent robot sub-systems, namely, the morphology, con-
troller and vision systems. Specifically, for the morphology
and controller sub-systems, bond graphs are used to unify
the modeling of multi-domain physical systems and con-
troller systems, which can conduct comprehensive analysis
and modeling of dynamic characteristics. For controllers
of swarm robot systems, finite state machines and gene
regulatory networks are commonly applied. In particular,
finite state machines can abstract robot behaviors into sev-
eral states, allowing the moving robot to switch among dif-
ferent states. The gene regulatory network is a structural
model that integrates the interactions among individuals
and their environments, enabling the behavior control of
each agent in swarm robots. In vision systems, deep neu-
ral networks and Bayesian networks are widely utilized.
Deep neural networks are used to learn internal relation-
ships and representation levels of data, enabling robots to
achieve human-level analysis abilities on various forms of
data, such as text, images and sounds. Bayesian networks,
on the other hand, utilize a probabilistic graph model to
describe causal relationships of uncertainty among vari-
ables, which can process environmental information re-
ceived by vision systems.

For example, Hod Lipson [15] employed evolutionary
computation to design robotic systems automatically in a
computer and then created the corresponding prototypes
using 3D printing, thereby realizing for the first time the
concept of using a machine to design and build machines.
That work was published in Nature in 2000. Subsequently,
Lipson published a series of papers about design automa-
tion in Nature and Science [16–18]. There, he presented
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Figure 1 Key components in modular design automation

a more general research question: Can we automatically
design a mechatronic or robotic system that can satisfy
pre-defined design specifications using Lego-like building
blocks? At about the same time, Erik Goodman (the found-
ing director of Beacon center for the study of evolution in
action) and his team made breakthrough research in the
field of mechatronic design automation (MDA) by employ-
ing bond graph (BG) and genetic programming (GP) to au-
tomate the design process of general mechatronic systems
[19]. BG is a graphical modeling tool that can unify the
modeling of multi-domain physical systems in a mecha-
tronic system. GP is a powerful tool in the field of evo-
lutionary computation that can simultaneously optimize
the topology and parameters of an arbitrary graph struc-
ture. Several circuits and mechanical systems [20–23] have
been designed automatically using the bond graph and ge-
netic programming (BGGP) approach, and the combined
automatic design of controllers and controlled objects in
continuous systems has also been achieved in [24]. In 2007,
Clarence D. Silva and his team [25] extended the BGGP
approach to allow it to treat nonlinear systems, and pro-
posed the concept of mechatronic design quotients to ad-
dress design problems involving multiple objectives. In
2012, Zhun Fan and his team [26] proposed an extension
of BGGP, called hBGGP with the capability of dealing with

both continuous and discrete dynamics as well as design-
ing both the plant and the controller concurrently. The
MODENA approach has also been effectively applied to
swarm robots. In 2018, Garattoni utilized finite state ma-
chines to govern a swarm of robots with complex cogni-
tive capabilities that can perform tasks successfully with-
out knowing the exact execution sequence [27].

To summarize, existing design automation approaches
usually pre-define a library of basic modules via a graph-
ical modeling tool. Then, they employ optimization or
metaheuristic methods, e.g., evolutionary computation,
to search for optimal solutions. When designing mecha-
tronic systems, the modeling language can be a bond graph
[28, 29]. In the design of a vision system, the represen-
tation can be deep neural networks [30, 31]. When de-
signing the behaviors of swarm robots, the modeling lan-
guage includes finite state machines and gene regulatory
networks [32–34]. These modeling languages are mod-
ular and parametric and can be uniformly represented
by graphical models. In this paper, systematic and com-
prehensive reviews of the current state-of-the-art design
automation approaches to intelligent robot bodies, con-
trollers, and vision systems are presented. The current
problems and challenges of this emerging research field are
analyzed, and future research directions are discussed. We
purport to attract the attention of the relevant scholars and
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promote the development of industrial software for design
automation of intelligent robots.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the design automation
for the morphologies of intelligent robots. The design au-
tomation for the controllers of intelligent robots is re-
viewed in Sect. 3. In Sect. 4, the integrated design automa-
tion for the morphologies and controllers is presented. De-
sign automation for the vision systems of intelligent robots
is summarized in Sect. 5. Section 6 discusses the research
and development trends of the integrated design automa-
tion of “Body-Brain-Eye” for intelligent robots. Section 7
summarizes and discusses several key technologies, cur-
rent problems, and challenges involved in the MODENA
for intelligent robots. Finally, conclusions are drawn in
Sect. 8.

2 Design automation for the morphologies of
intelligent robots

MODENA for the morphologies of intelligent robots refers
to the systematic use of intelligent design optimization
methods to design the robot morphologies, i.e. the plants
or mechanical infrastructures. The current research on the
design automation for intelligent robot morphologies is
primarily divided into two categories: 1) Fixing the mor-
phological topology and optimizing the geometric param-
eters of the morphology [35–39]. 2) Establishing a library
of parametric modules for the morphologies of intelligent
robots [40–42], and then simultaneously optimizing the
topologies and geometric parameters of the morphologies,
by reconfiguring the parameterizable modules.

2.1 Parametric optimization of the morphologies
The optimization of intelligent robots’ designs presents a
challenging problem which is usually a constrained multi-
objective problem with mixed discrete and continuous
variables that exhibit non-differentiation, discontinuity,
and nonlinearity. The evaluation of some objectives also
requires time-consuming simulations. Consequently, evo-
lutionary algorithms are popular choices in practical engi-
neering applications. For example, West et al. [43] utilized
a genetic algorithm to optimize the output error system to
identify problems for a seven-degree-of-freedom manipu-
lator. The algorithm optimized the parameters of joints to
generate a high-performance manipulator. Similarly, Xiao
et al. [44] applied NSGA-II to optimize the weight and ma-
nipulability of the manipulator, resulting in a lighter and
more maneuverable manipulator than the original UR5
structure. Hassan et al. [45] used NSGA-II to optimize a
robotic gripper, achieving an optimal gripping force while
also revealing significant relationships among objective
functions and variable values from Pareto-optimal solu-
tions. In addition, Fan et al. [46] proposed a push and pull
search framework [47] combined with a multi-objective

evolutionary algorithm based on decomposition to opti-
mize a six-degree-of-freedom teaching manipulator. Their
approach resulted in designs that outperformed those of
human engineers and some popular constrained multi-
objective evolutionary algorithms. Additionally, reinforce-
ment learning has been employed to optimize the param-
eters of morphologies. As an example, Zhang et al. [48]
proposed an algorithm that utilizes reinforcement learn-
ing to automate optimal robot hand design, demonstrating
its effectiveness in tasks such as grasping boxes, cylinders,
and spheres.

2.2 Integrated design automation for parameters and
topologies of morphologies

Modular robots [49–52] embody the principles of inte-
grated design automation, which incorporates the opti-
mization of parameters and topologies to create diverse
morphologies. Modular graph models for the morpholo-
gies of intelligent robots are composed of either homo-
geneous or heterogeneous modules, each of which in-
volves a variety of actuators and sensors [53, 54], which
allows intelligent robots to achieve self-assembly, self-
reconfiguration and self-repair. For example, Lipson et al.
[15] were not only the first to use modules from a pre-
defined library of modules to automatically assemble elec-
tromechanical systems that meet pre-defined functional
requirements but were also the first to apply evolution-
ary algorithms to design robotic systems on the computer.
Kelly et al. [55] applied a stochastic optimization algorithm
to autonomously assemble a model for planar distributed
assembly, which achieved innovative designs. Inspired by
the large and complex nests built by social insects, Werfel
et al. [56] established a distributed system for automating
construction, which built some particular desired struc-
tures according to a high-level design provided by users.
Inspired by the principles of biological evolution [57], Dai
et al. proposed the metamorphic theory [58], which al-
lows the topologies of morphologies to be reconfigured
and metamorphosed [59] and to evolve dynamically [60]
according to actual needs, thus flexibly adapting to chang-
ing working environments and functional requirements.
On this basis, a variety of robots have been developed, such
as a hybrid continuum robot based on pneumatic muscles
[61], a crawling robot [62], and a quadruped robot based
on the metamorphic mechanism [63, 64].

With the development of topology optimization design
methods, modular robots are increasingly applying such
methods to achieve innovative designs of morphologies
[66, 67]. Compared with traditional topology optimiza-
tion design methods (e.g., the level set method [68], the
evolutionary structural optimization method [69], and the
moving morphable component method [70]), isogeomet-
ric topology optimization (ITO) [71] is a modern struc-
tural optimization technique that leverages isogeometric
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Figure 2 The framework of evolutionary synthesis of mechatronic systems [65]

analysis. Specifically, ITO seamlessly integrates computer-
aided design, computer-aided engineering, and structural
topology optimization, laying a theoretical foundation for
the integration of design, analysis, and optimization of the
morphologies for intelligent robots [72]. In recent years,
ITO has been extensively studied and has driven the de-
velopment of a new generation of digital design. For ex-
ample, Gao et al. [73–75] studied the ITO method to de-
sign new materials and structures with special properties,
such as auxetic metamaterials [76] and ultra-lightweight
architected materials [77]. To improve the stability and ac-
curacy of the optimization process and broaden the ap-
plication scenarios of topology optimization, Seo et al.
[78] proposed a new ITO, which can eliminate the design
space dependency. Wang et al. [79] integrated isogeomet-
ric analysis with the level set method and proposed a high-
precision ITO that satisfies geometric constraints. ITO en-
ables the integration of digital design and analysis, thus
significantly shortening the development cycle of the mor-
phologies of intelligent robots and reducing research and
development costs.

BGGP combines the capability of bond graphs (BG) to
represent the mixed-domain physics of generic mecha-
tronic systems in a unified way, and of genetic program-
ming (GP) to explore in an open-topology design space
automatically and optimize both the topologies and pa-
rameters of design candidates represented by bond graphs.
For example, Fan et al. [19, 29, 81] proposed an automatic

design method for mechatronic systems combining bond
graphs and genetic programming, which has already been
applied to the design of electrical and mechatronic sys-
tems, such as analog filters [81], electric filters [19] and the
driver system of a printer [29]. Meanwhile, Wang et al. [24]
proposed a knowledge-based evolutionary design frame-
work for mechatronic systems by combining the BGGP
method with human knowledge, as shown in Fig. 2. In
the BGGP method, BG is used to model multi-domain
systems and GP is employed to search the open-end de-
sign spaces automatically. Figure 3 illustrates the mapping
from genotype to phenotype in the BGGP method. Com-
pared with other methods, the BGGP method has a dis-
tinct advantage of being able to search in a topologically
open-ended design space that is represented uniformly
by bond graphs. As a special kind of mechatronic sys-
tem, robotic systems can also utilize the BGGP approach
to the design automation of their morphologies. Because
modular robotic morphologies involve many physical sub-
systems, they need a unified expression to model and an-
alyze their performance. BG, as a modeling language that
can describe all physical sub-systems (and continuous con-
trollers) uniformly, can be utilized to model and analyze
the dynamics of the designed mechatronic systems effec-
tively and efficiently [82, 83].

In conclusion, many achievements have been made in
design automation for the parameters and topologies of
the robot morphologies. In particular, self-assembly [84],
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Figure 3 An example of genotype-phenotype mapping [80]

self-reconfiguration [85] and self-repair [86, 87] character-
istics of modular robots demonstrate the superiority of ap-
plying design automation for parameters and topologies of
the morphologies. It is noted that the controller is also an
important part of an intelligent robot, and the next section
will detail the design automation for the controllers of in-
telligent robots.

2.3 Summary
In summary, design automation for the morphologies
of intelligent robots has been widely applied, which can
simultaneously optimize the geometric parameters and
topologies of robots. Here, we present a concise overview
of the various methods reviewed, highlighting the connec-
tions and differences among them from multiple perspec-
tives, as displayed in Fig. 4.

The research on the design automation for the mor-
phologies of intelligent robots is mainly divided into three
categories: (1) Optimizing geometric parameters while
keeping a fixed morphological topology [43–46, 48]. These
methods usually use multi-objective evolutionary algo-
rithms [43–46] or reinforcement learning methods [48] to
optimize the geometric parameters to meet task-specific
requirements and obtain an optimal design. Since the
topology is fixed, it is difficult to adapt to complex tasks.

Figure 4 A summary of design automation for the morphologies of
intelligent robots

(2) Topology optimization methods. These methods are
represented by isogeometric topology optimization [73–
75, 78, 79]. After setting the design space of the topol-
ogy structure, optimization objectives and constraints,
these methods can automatically perform topology opti-
mization design of the robot system’s components based
on the implementation of computer aided engineering
(CAE) analysis. These topology optimization methods can
not only shorten the design cycle but also improve the
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design quality. However, the current work is mainly fo-
cused on the topology design of the components of in-
telligent robots. (3) Simultaneous optimization of topolo-
gies and geometric parameters of robot morphologies
[15, 19, 24, 55, 56, 81]. These methods usually decom-
pose the morphologies of intelligent robots into a series
of independent modular units, and then achieve assembly
automation and parameter design by using evolutionary
computation or reinforcement learning techniques. How-
ever, these approaches rarely perform CAE analysis of the
assembled morphologies, which cannot perform testing
using computer simulations and provide valuable insights
into the performance of robot morphologies during the
early development phase. To summarize, although a large
number of in-depth studies have been conducted on de-
sign automation for the morphologies of intelligent robots,
further research is still required on how to conduct ef-
ficient design automation methods to meet the require-
ments of dynamic and complex tasks and environments.

3 Design automation for the controllers of
intelligent robots

3.1 Design automation for the controllers of individual
robots

In an intelligent robotic system, the controller often plays
a key role [88, 89]. Many studies [90] have conducted
in-depth research on the design automation for the con-
trollers of intelligent robots. For example, Zhong et al. [91]
proposed a novel kinematic calibration method based on
an improved whale swarm algorithm to optimize the con-
troller design of a biped robot to enable the robot to walk
continuously and smoothly on complex ground. Due to the
complexity of the walking dynamics of the biped robot,
Gao et al. [92] applied a pre-trained neural network to
design an optimal gait control model. Simulation results
showed that the control model could effectively improve
the maximum walking speed and terrain adaptability in a
short time. In addition, hydraulic actuators are frequently
employed in biped robot controllers. Nevertheless, due to
the nonlinearity of hydraulic systems, their dynamic per-
formance of the systems under control requires further im-
provement [93]. To this end, Dong et al. [94] proposed an
improved drone squadron optimization-based approach
to optimize the design of the hydraulic controller. The
comprehensive experimental results indicated that the op-
timized hydraulic controller had better stability and higher
accuracy.

In addition, proportional-integral-derivative (PID) con-
trollers have been widely utilized in intelligent robots due
to their advantages of simple design, easy implementation,
fast response, and small steady-state error. Many stud-
ies [95–98] have conducted in-depth research on the de-
sign optimization of PID controllers. For example, Sharma

et al. [99] applied the cuckoo search algorithm to opti-
mize the parameters of the fractional-order fuzzy PID con-
troller for a two-link planar rigid robotic manipulator. Ex-
perimental results demonstrated that the optimized PID
controller outperformed the other controllers in terms
of trajectory tracking, model uncertainty, disturbance re-
jection, and noise suppression. For the trajectory track-
ing of autonomous mobile robots, Ali et al. [100] em-
ployed an artificial bee colony to optimize the parameters
of a PID controller, which obtained two high-performance
PID controllers (speed controller and azimuth controller).
Taherkhorsandi et al. [101] proposed an adaptive and ro-
bust controller that combines PID with sliding control
to better control the motion of a biped robot. They uti-
lized a multi-objective genetic algorithm to optimize the
controller, resulting in successful control of a biped robot
walking on a slope in the lateral plane. In general, PID con-
trollers have difficulty in achieving optimal control of com-
plex and nonlinear control systems [102]. To this end, Sun
et al. [103] established a set of component units and per-
formance units, and designed an optimal controller using
the differential evolution algorithm. On this basis, Xin et
al. [104] proposed a general design automation method
for controllers to simultaneously optimize the structures
and parameters of the controllers. Their approach com-
bines basic controller components and related parameters
to automatically create an optimal control model tailored
to specific requirements.

In addition to the design automation methods men-
tioned above for PID controllers, many studies have em-
ployed neural networks as controllers for intelligent robots
[105–107]. For example, Gallagher et al. [108] developed
an approach in which they evolved neural networks in sim-
ulation to control the locomotion in an artificial insect,
and successfully transferred the controller to a real hexa-
pod robot. Nolfi et al. [109] applied an evolutionary algo-
rithm to design and optimize a neural controller, which
makes a bipedal robot equipped with actuators and sen-
sors move according to concentration differences. In Paul
et al.’s study [110], an evolutionary algorithm was used to
optimize the design of a closed loop recurrent neural net-
work controller, which achieved stable and bipedal move-
ments on a 5-link biped robot in a physics-based simula-
tion environment. In addition, Rahmani et al. [111] pro-
posed a novel adaptive neural network integral sliding-
mode controller that utilized a bat algorithm to control a
biped robot, and proved its stability using the Lyapunov
theory.

3.2 Design automation for the controllers of swarm robots
Traditional control methods were initially designed to

control the motions of individual robotic systems. How-
ever, when the scale of intelligent robotic systems is en-
larged with numerous individual robots involved, tra-
ditional control approaches may face many challenges.
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Figure 5 Diagram of the automated design framework [33] for entrapping pattern generation

These challenges include insufficient fault tolerance,
meaning that the failure of a few individuals may lead to
the failure of the whole system, a significant increase in
computational overhead, making it difficult to respond
to unexpected occurrences timely, and other issues. The
design automation of controllers for swarm robots pro-
vides a viable solution to the above difficulties. To this end,
some studies have extracted the basic unit of swarm be-
havior by exploring the mapping between swarm behavior
and individual behavior [112–116]. Then, an evolutionary
computation-based swarm behavior control framework
suitable for dynamic and complex task environments is au-
tomatically designed. For example, Francesca et al. [117]
abstracted some individual behavior into several states
(such as random motion and static state) and then ap-
plied an optimization algorithm (named F-Race) to au-
tomatically design controllers based on a probability fi-
nite state machine. In the following year, Francesca et al.
[118] improved the design of control software for robot
swarms and proposed two automated design methods
(Vanilla and EvoStick). The experimental results demon-
strated that the proposed design automation methods out-
performed human designers in specific experimental sce-
narios. Although the works [117, 118] successfully ad-
dressed relatively simple or constrained problems, their
limitations quickly emerged as the problem complexity
increased [119]. In particular, a complex task is made of

several subtasks that may require cooperation and have
mutual dependencies and time constraints [120]. To this
end, Fan et al. [33] constructed a library of logical relation-
ships of information exchange between agents by learning
from the method of information exchange between cells
in organisms. They then applied genetic programming to
automatically design the optimal swarm behavior control
model so that swarm robots can entrap targets in different
patterns according to different environments (as shown in
Fig. 5). Furthermore, Wu et al. [121] refined individual sim-
ple behavioral rules with universal applicability (such as
exploration, moving to the target, and avoiding obstacles)
through an in-depth analysis of the flocking task. They
then optimized these individual behavior rules by com-
bining behavioral trees and the proposed heterogeneous–
homogeneous co-evolution method to automatically de-
sign swarm behavior control strategies. Currently, these
studies [33, 121] are mainly in laboratory environments or
simulation environments, and few studies are deployed in
practical application environments. To this end, Vásárhe-
lyi et al. [122] applied CMA-ES to optimize the design of
the swarm control mechanism by considering the pres-
ence of machine failures, communication delays, and air-
flow disturbances in actual flight, which achieved a suc-
cessful flocking flight in the field with 30 unmanned aerial
vehicles (UAVs).
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Figure 6 A summary of design automation for the controllers of
intelligent robots

3.3 Summary
To summarize, research on the design automation of the
controllers is a key procedure to achieve the design au-
tomation of the entire intelligent robots. In this regard,
we have summarized the characteristics and applicability
of various design automation methods for controllers in
two different aspects: the applied techniques and target
objects, such as single robot controller and swarm robot
controller, as shown in Fig. 6.

The research on the design automation for controllers
consists of two main aspects: (1) Optimizing the geomet-
ric parameters of the controller with a fixed controller
topology. For example, evolutionary algorithms, such as
MOGA [101, 108–110], CMA-ES [122] and hybrid evo-
lutionary algorithms (such as the improved whale swarm
algorithm [91], cuckoo search algorithm [99], artificial bee
colony [100], and bat algorithm [111]), are applied to opti-
mize controller parameters [91, 94, 99–101, 108–111, 122].
(2) Simultaneous optimization of the topologies and geo-
metric parameters of the controller [33, 92, 103, 104, 117,
118, 121]. These methods usually pre-build various modu-
lar control units and then apply evolutionary algorithms to
automatically assemble and parameterize these units, re-
sulting in the automatic design of the optimal controller
topology and parameters.

From the perspective of the scale of controlled objects,
the design automation of controllers can be divided into
two categories: (1) Design automation for the controllers
of single robotic systems [91, 94, 99–101, 108–111]. (2) De-
sign automation for controllers of swarm robotic systems
[33, 103, 104, 117, 118, 121, 122]. Compared to the design
of a single robot controller, designing a swarm robot con-
troller is more complex. The main reason is that the map-
ping mechanism from swarm behavior control to individ-
ual behavior control is not clear. Designing behavior con-
trol rules for each robot in the swarm robot to generate

intelligent swarm behavior at the system level is an impor-
tant research direction in the future.

4 Integrated design automation for the
morphologies and controllers of intelligent
robots

In recent years, researchers have introduced the idea of bi-
ological evolution into integrated design automation for
morphologies and controllers of intelligent robots [123–
126], which can automatically identify the optimal designs
of intelligent robots according to fitness functions deter-
mined by given tasks or environments. Based on these
ideas, some studies [127–129] have proposed an under-
lying system architecture called the triangle of life, which
consists of three stages: morphogenesis, infancy, and ma-
ture life. This system allows for a population of robotic or-
ganisms that evolve and adapt to the given environment.
Additionally, evolutionary computation, as a biologically-
inspired algorithm, has been used in numerous studies for
integrated design automation of morphologies and con-
trollers of intelligent robots [53, 130]. Modular robots can
integrate the morphologies and controllers into a whole
and simplify the search space, improving the efficiency of
evolutionary computation [51]. Thus, the design automa-
tion of modular robots based on evolutionary comput-
ing has become an important research method for inte-
grated design automation for the morphologies and con-
trollers of intelligent robots. For example, Marbach et al.
[131] utilized genetic programming to integrate config-
uration and control of locomoting homogenous modu-
lar robots, breaking through the limitations of human de-
signers’ experience and intuitions in manual design meth-
ods. It is worth noting that crossover and mutation in
the evolutionary process may cause mismatches between
robot morphologies and controllers of the offspring. To al-
leviate this problem, Agrim Gupta et al. [132] designed
a deep evolutionary reinforcement learning framework,
which learned challenging motor tasks in complex en-
vironments by evolving different surrogate models. The
study confirmed that environmental complexity can pro-
mote the evolutionary design of robots, helping offspring
robots learn new skills. Furthermore, the study confirmed
that the robot structure is related to the learning efficiency
of the controller. An excellent structure can promote the
effective learning of the offspring robots.

Recently, neural network-based approaches have been
widely applied in integrated design automation for the
morphologies and controllers of intelligent robots [133,
134]. A RoboGrammar system inspired by arthropods
was proposed by Zhao et al. [135]. The proposed system
could efficiently generate hundreds of thousands of robotic
structures composed of the given components. Then,
high-performance robots were found by applying graph
heuristic search and model predictive control (MPC),
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achieving concurrent optimization of robot morphologies
and controllers. By extending the single-objective graph
heuristic search procedure based on the RoboGrammar
system, Xu et al. [136] proposed a new multi-objective
co-design algorithm for obtaining Pareto-optimal robot
topologies and controllers. Aslan Miriyev and Technology
and Mirko Kovač [137] created a symbiotic human–robot
ecosystem (physical artificial intelligence) through the in-
tegrated evolution of the organism, control, morphology,
action execution, and perception. The ecosystem decides
and adapts in real-time for navigation, locomotion, and
manipulation by processing combinations of signals si-
multaneously sent from multiple sensors in their “body”
to their “brain”.

In addition, genetic programming can also be utilized for
efficient integrated design automation of the morpholo-
gies and controllers of electromechanical systems. For ex-
ample, Wang et al. [138] proposed a “body-brain” design
automation method that integrates GP and bond graphs to
automate the integrated design of a quarter-car suspension
control system’s morphologies and controllers. Compared
with traditional methods, this method can help designers
to achieve more creative and flexible designs. In addition,
Dupuis et al. [26] proposed a design automation method
called HBGGP, which merges hybrid bond graph (HBG)
and genetic programming (GP) into the evolutionary de-
sign of topologies and parameters of a hybrid dynamical
system. In the proposed method, HBG is utilized to repre-
sent dynamic systems involving both continuous and dis-
crete system dynamics, and GP is used to explore the open-
ended design space of HBGs to optimize the morphologies
and parameters of DC-DC converters. Thereafter, they in-
vestigated the evolutionary design of controllers for hybrid
mechatronic systems [139] and employed a finite state au-
tomaton (FSA) to represent discrete controllers. A case
study of a two-tank system demonstrated that the pro-
posed evolutionary approach can lead to a successful de-
sign of an FSA controller for the hybrid mechatronic sys-
tem.

To summarize, the integrated design automation of the
morphologies and controllers of intelligent robots is an
important trend in future research. Separate considera-
tion of the design automation of the morphologies and the
controllers would lead to sub-optimal solutions and un-
satisfactory overall performance. Here, we summarize the
characteristics and applications of various methods from
the perspective of research directions and applied opti-
mization techniques of integrated “body-brain” design au-
tomation for intelligent robots, as illustrated in Fig. 7.

The current research directions for morphologies and
controllers mainly consist of three aspects: (1) Design-
ing the search space [26, 135, 138]. It is crucial to con-
struct a reasonable search space so that novel solutions
can be found. (2) Designing the search strategy [26, 131,

Figure 7 A summary of integrated design automation for the
morphologies and controllers of intelligent robots

132, 135, 136]. A good search strategy can improve the ef-
ficiency and effectiveness of the algorithm. (3) Designing
evaluation indicators [131, 135]. The evaluation indicators
of comprehensive performance are designed to evaluate
the performance of search candidates and guide the algo-
rithm’s search.

According to the applied optimization techniques, the
integrated design automation for the morphologies and
controllers is divided into three main categories: (1) Evolu-
tionary computation-based approaches [131, 136]. These
approaches focus on finding the best design solutions
for the integrated design of the morphologies and con-
trollers by simulating the evolutionary process in nature.
The advantage of these methods is that they allow the de-
sign of solutions that are superior to manual ones. How-
ever, due to the complex design space and randomness in
the search process, the optimal design is not guaranteed.
(2) Learning-based approaches [135]. These approaches
focus on learning the integrated design strategies for the
morphologies and controllers by setting appropriate re-
ward functions and making dynamic decisions with known
knowledge to obtain a design solution that maximizes re-
wards. The method simplifies the design space and im-
proves the search efficiency through a heuristic search
method, and is suitable for the integrated design automa-
tion for the morphologies and controllers of intelligent
robots with complex structures. (3) Combination evolu-
tion and learning approaches [26, 132, 137, 138]. These
methods mainly apply the evolution-based method to de-
sign the morphologies, and then apply the learning-based
method to design the controllers, which can effectively re-
duce the search space and improve search efficiency.

The integrated design automation of the morphologies
and controllers of intelligent robots presents a challenge
due to the strong coupling relationship between the mor-
phology and controller, as it involves multi-energy domain
physical systems. This makes it an important area for fur-
ther research.
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5 Design automation for the vision systems of
intelligent robots

The vision systems of intelligent robots can provide rich
visual perception information, such as depth information
and motion information. This information is often one of
the most important components for guiding the intelligent
robot’s motion-decision-making process [140]. However,
in practice, vision systems are often designed manually.
In most cases, designers require numerous trial-and-error
experiments to obtain an appropriate design scheme for
the vision system [141, 142]. Design automation for vision
systems can be used to automatically design an optimal
or desired vision system design scheme for the robotic vi-
sion tasks needed. Therefore, design automation for vision
systems represents an indispensable element of design au-
tomation for intelligent robots.

Computer vision research provides an essential founda-
tion for the design automation of robotic vision systems,
where deep learning has become a crucial research di-
rection in this field. Researchers can obtain desired re-
sults by constructing a neural network and using the corre-
sponding image data for training, provided that the neural
network architecture is properly designed. However, the
design of neural network architecture requires designers
to have a full understanding of various computing mod-
ules and training methods. In addition, designers have to
conduct repeated experiments to adjust network architec-
tures to produce optimal architectures with excellent per-
formance [142–144]. In recent years, neural architecture
search (NAS) has gradually emerged as a research hotspot.
In a given search space, NAS can automatically identify
optimized neural network architectures without manual
design. Therefore, NAS provides an important foundation
for the design automation of intelligent robotic vision sys-
tems.

This section introduces the recent work related to NAS
and highlights the shortcomings of existing research. It
also identifies the problems that need to be addressed in
the future to achieve the design automation of intelligent
robotic vision systems.

5.1 Neural architecture search
NAS is primarily composed of three parts: search space de-
sign, search strategy, and performance estimation strategy.
Depending on the search strategy, NAS can be mainly clas-
sified into three categories [145–147]: (1) RL-based NAS,
(2) differentiable NAS, and (3) evolutionary NAS.

The RL-based NAS models the search task as a Markov
decision process and offers rewards depending on the per-
formance of the generated network after training on a
test set. Then, the method trains the RL model accord-
ing to the reward and adjusts the generated neural net-
work architecture, thereby using the RL to guide the neural
network architecture generation. Representative achieve-
ments include MetaQNN [148] (proposed by MIT) and

NASNet [149, 150] (proposed by Google), both of which
search the layers of the neural network. In contrast, Block-
QNN [151] (proposed by Shangtang Technology) searches
modules of the neural network. Unlike the application
of evolutionary algorithms or RL to a discrete and non-
differentiable search space, differentiable methods make
architecture searches more efficient by using gradient in-
formation through the continuous relaxation of the archi-
tecture representation [152]. The network architectures
designed by differentiable-based NAS have also achieved
excellent performances with representative examples, in-
cluding the differentiable architecture search (DARTS)
[152] (proposed by Google Brain) and PDARTS (pro-
posed by Huawei’s Noah’s Ark Laboratory) [153]. Evolu-
tionary NAS regards the topological structure and super-
parameter adjustments of the model as an optimization
problem and adopts an evolutionary algorithm to optimize
the neural network. In 2019, the Uber AI Lab published a
review article in Nature Machine Intelligence that strongly
advocated the evolutionary NAS and anticipated its future
development [154]. Representative evolutionary NAS ex-
amples include the neuroevolution of augmenting topolo-
gies (NEAT) [155], CoDeepNEAT [156], and NSGA-Net
algorithms [157].

5.2 Design automation for vision systems
In real life, robots assigned to different tasks require dif-
ferent visual capabilities. For example, drones use object
detection [158], object tracking [159], motion estimation
[160] and depth estimation [161] for autonomous obsta-
cle avoidance. Autonomous cars use 3D object detection
[162] to establish the physical positions of obstacles for
path planning. Medical robots use image segmentation
[163–165] to analyze the information in medical exami-
nation reports and thereby help doctors diagnose a pa-
tient’s condition, and more (see Fig. 8). Different from lab-
oratory studies, robots in practical applications typically
are unable to provide sufficient computing resources with
the embedded devices offered. Consequently, the develop-
ment of light-weight models is a promising research area.

Thus, by investigating the vision tasks often encoun-
tered in current robot applications, this section introduces
design automation for vision systems involved in the vi-
sion tasks that robots currently face, including (1) object
detection, (2) image segmentation, (3) depth estimation,
(4) video analysis, and (5) embedded device application.

5.2.1 Neural architecture search for object detection
Object detection can enable a robot to identify the ob-
ject of interest in an image and determine its position, al-
lowing the robot to perform tasks such as object picking
[170, 171], object tracking [172, 173], and other tasks. The
network architecture of object detection is primarily clas-
sified into three parts: the backbone, neck, and head. The
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Figure 8 Different visual tasks that robots often encountered, which include object detection [166], semantic segmentation [166], instance
segmentation [166], depth estimation [167], image deraining [168] and image dehazing [169]

backbone is responsible for extracting image features, the
neck is responsible for fusing features, and the head is re-
sponsible for classifying and locating objects. Currently,
two main methods are available for object detection ar-
chitectures: (1) searching for the overall network architec-
ture [174] and (2) searching for parts of the network ar-
chitecture while using other parts of the existing network
architecture [175]. Depending on the problem character-
istics of the object detection tasks and the characteristics
of the network structures, various methods have been in-
troduced for searching object detection network architec-
tures.

Chen et al. [176] proposed the DetNAS algorithm to ad-
dress the problem of losing object location features when
directly using an image classification network as the back-
bone for object detection. To achieve this, they search
the entire network architecture using ShuffleNetV2 as
the search space. The algorithm is pre-trained on Ima-
geNet datasets and fine-tuned on object detection task
datasets to improve classification and localization capa-
bilities. Meanwhile, DetNAS employs an evolutionary al-
gorithm to search the sub-network. Wang et al. [175] pro-
posed NAS-FCOS, a fast neural architecture search algo-
rithm for object detection, to reduce the computational
burden and improve search speed. The algorithm uses an
existing image classification network, such as ResNet or
MobileNet, as the backbone network and constructs the
network according to the feature pyramid network (FPN)
and detection head. NAS-FCOS searches only the net-
work structures of the FPN and detection header in dif-
ferent search spaces. The algorithm employs a long short-
term memory (LSTM) network as an agent and uses an

RL-based search strategy to build a network for the FPN
and detection header. Structural-to-modular NAS [177]
adopts a two-stage search strategy to search network ar-
chitectures for object detection. In the first stage, different
existing networks are combined based on the structure of
the target detection network to identify the combination
of network structures that achieved the Pareto optimum
in terms of inference speed and accuracy. In the second
stage, all network structures in the Pareto solution set are
further searched in different modules.

In recent years, NAS for object detection has received in-
creasing attention and achieved very competitive results.
However, how to define an optimal search strategy and
search space remains a problem for object-detection NAS.

5.2.2 Neural architecture search for image segmentation
Image segmentation is a process that involves classifying
each pixel in an image, making it a dense prediction task.
Robots can utilize image segmentation for various func-
tions, including defect detection and measurement [178]
and medical analysis [179, 180]. Currently, image segmen-
tation architecture search methods fall into two categories.
The first category involves searching for the module struc-
ture under a fixed network architecture, while the second
category involves searching for both the network architec-
ture and module structure simultaneously.

Liu et al. [181] proposed Auto-DeepLab, which first ap-
plied NAS to image segmentation. Auto-DeepLab uses
architecture- and cell-level search methods to explore the
overall architecture of the model and cell structure, re-
spectively. It formulates the architecture search problem
as a differentiable optimization one and uses the gradient-
based method to search the model architecture. To quickly
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Figure 9 The framework of Genetic U-Net [183]. In the framework, if the dataset is pose estimation [184], object tracking [185] or object detection
[186], the framework can automatically generate the corresponding optimal neural network model

search a lightweight semantic segmentation network for
mobile device applications, Nekrasov et al. [182] employed
the existing network architecture as the encoder and fo-
cused on searching the decoder network architecture un-
der the encoder-decoder network architecture. Wei et al.
[183] proposed a Genetic U-Net estimation for retinal ves-
sel segmentation, which takes U-shaped encoder-decoder
structure as the network architecture and explores the net-
work structure within each cell in the encoder network and
decoder network by an evolutionary algorithm. Genetic U-
Net uses binary coding to encode the network structure
and regards the network performance on the test dataset
as the fitness of individuals. Through genetic operations
such as selection, crossover and mutation, better offspring
individuals are evolved continuously and finally the net-
work structures with the best performance are identified.
Experimental results show that Genetic U-Net has higher
segmentation accuracy yet fewer parameters than existing
algorithms in DRIVE, STARE, CHAS_DB and HRF public
datasets. It is worth noting that Genetic U-Net is a rather
general framework, which can conveniently switch to dif-
ferent vision tasks and generate optimal models according
to the provided training data, as depicted in Fig. 9.

5.2.3 Neural architecture search for depth estimation
Depth estimation enables robots to calculate the dis-
tance to objects by analyzing images [167, 187]. These
estimations are crucial in downstream tasks such as au-
tonomous obstacle avoidance [188, 189] and path planning

[190, 191], making them important vision functions for
robots. Monocular and binocular depth estimation tech-
niques are the two most commonly used vision systems in
robots. Therefore, this section primarily focuses on intro-
ducing architecture search algorithms for monocular and
binocular depth estimation.

Monocular depth estimation directly predicts the depth
map of the input image, which is an intensive prediction
task. Huynh et al. [192] proposed LiDNAS to search for
lightweight monocular depth estimation networks. Under
the preset network architecture, each module structure is
searched using an auxiliary tabu search algorithm. During
network training, the prediction accuracy and the num-
ber of parameters are used to obtain a network model
with fewer parameters and higher estimation accuracy.
Saikia et al. [193] extended DARTS [152] and applied it to
depth estimation tasks by using AutoML technology to ef-
ficiently search for optimal network structures. Nekrasov
et al. [182] utilized a method to search for a lightweight
semantic segmentation network architecture for depth es-
timation, which resulted in competitive performance com-
pared to manually designed depth estimation networks.

Binocular depth estimation primarily involves identify-
ing matching points in left and right images using stereo
matching [194]. A stereo vision system model is then used
to estimate the depth map. Therefore, the architecture
search in the binocular depth estimation task is one of
the search tasks for the stereo matching network model.
This network is typically composed of two parts: a fea-
ture extraction network and a matching network. Inspired



Li et al. Visual Intelligence             (2023) 1:2 Page 14 of 28

by multi-resolution feature extraction and fusion, Cheng
et al. [195] proposed the learning effective architecture
stereo algorithm. This algorithm, which is based on a
gradient-based search strategy, adopts a two-level hierar-
chical search strategy to search the network architecture
and the internal structures of the constitutive modules si-
multaneously. To solve the problem of decreased matching
accuracy in unseen scenes, Zhang et al. [196] established
a reusable architecture growth framework that allows the
resulting network to learn to match stereo unseen scenes.
Wang et al. [197] introduced an elastic and accurate net-
work for stereo matching (EASNet), which divides the net-
work architecture into four components based on different
functions. The search space of each component includes
manually designed calculation modules for stereo match-
ing. Experiments show that EASNet achieves superior re-
sults in terms of both inference speed and matching accu-
racy.

To summarize, depth estimation is primarily classified
into monocular and binocular depth estimation. Different
estimation methods produce different search models. Cur-
rently, the depth estimation architecture search is based on
single images. However, depth estimations implementing
multi-image information can exploit more spatial informa-
tion. Therefore, multi-image-based depth estimation ar-
chitecture search is a promising research direction in the
field of depth estimation in the future.

5.2.4 Neural architecture search for video analysis
Different from rapid development towards image data,
NAS on video data is still an under-explored area and only
several video tasks are studied, including action recogni-
tion, super resolution and pose estimation. Existing meth-
ods mainly focus on introducing successful experiences
from image data and further exploit spatio-temporal cues
and motion information in video data.

For action recognition, Peng et al. [198] first proposed
a NAS method for 3D models to achieve design automa-
tion. Specifically, it uses the pseudo 3D operator to process
spatial and temporal features in the search space. To fur-
ther exploit spatio-temporal relationships, Piergiovanni et
al. [199] proposed EvaNet by introducing an inflated tem-
poral gaussian mixture (iTGM) to the search space, which
enables the model to catch the spatial and temporal in-
teractions among feature flows. In addition, Ryoo et al.
[200] established AssembleNet to consider object motion
information in design automation. In particular, it first
builds a two-stream model as directed graphs and then
uses evolutionary algorithms to establish connections be-
tween different blocks on RGB and optical flow input at
different temporal resolutions. This can better exploit ap-
pearance and motion information from videos. Unlike the
previous methods, Wang et al. [201] considered introduc-
ing an attention mechanism and proposed AttentionNAS,

which builds a spatio-temporal attention cell search space
and enables generated models to catch long-distance de-
pendencies in video data. Additionally, Piergiovanni et al.
[202] focused on improving the computation efficiency of
video models and proposed TinyVideoNet, which intro-
duces model running time into the reward loss function
and guides the search strategy to generate a desired model
with low computing latency. For video super resolution,
Liu et al. [203] proposed EVSRNet to achieve high fidelity
results and efficient computation. Specifically, it uses the
residual block as the basic building block, and then simi-
larly introduces the fidelity of results and computation cost
of candidate models into the reward loss function. After
that, a gradient descent method is performed to search
the optical number and size of the residual blocks. Con-
sequently, the generated model can produce more accu-
rate details while keeping lower computation costs and
fewer model parameters. For video pose estimation, Xu
et al. [204] proposed ViPNAS to utilize pose relationships
between adjacent frames. Particularly, it established the
search space by considering the correlation information
between adjacent frames and then performed feature fu-
sion on the heatmaps of the previous and current frames
via a series of optional operations. Thus, the model can
automatically learn the best fusion operation and the best
stage to fuse.

5.2.5 Neural architecture search for embedded devices
Although current NAS methods can generate high-
precision models, these models are often not applicable in
real-world intelligent robots due to unacceptable comput-
ing latency. This is because real-world robots are usually
built on embedded devices, which can only provide lim-
ited memory and computing resources. However, current
NAS methods do not account for these important factors.
Therefore, designing a suitable NAS method according to
the characteristics and requirements of embedded devices
is an urgent problem to be solved.

On embedded devices, computing latency and mem-
ory consumption of models are two key factors. To op-
timize the computing latency, Cai et al. [205] developed
ProxylessNAS to model the computing latency of mod-
els as a continuous function and optimized it as a regu-
larization loss to find a model with low latency. Similarly,
Wu et al. [206] established DANS, which uses the latency
of each block to estimate the latency of the entire model
and introduces a latency reward loss to guide the search
strategy. López et al. [207] introduced E-DNAS to use
a multi-objective differentiable loss function combining
classification accuracy and minimum latency on the fea-
ture map. Luo et al. [208] proposed LightNAS with a two-
step procedure, which first applies a large-scale and one-
time search for models that satisfy the latency constraints
and then iteratively selects the candidate with the best
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accuracy. To optimize the memory consumption, Cassi-
mon et al. [209] proposed introducing two soft constraints
(cache and performance) and two hard constraints (mem-
ory cost and latency) into the reward loss function, which
can guide the search strategy to find a model that meets
resource requirements. In addition, Wan et al. [210] devel-
oped DMaskingNAS with an efficient masking mechanism
for feature reuse and effective shape propagation, drasti-
cally expanding the search space by supporting searches
over spatial and channel dimensions.

In addition to building models from scratch, another di-
rection to consider is how to automatically compress an
existing large model. He et al. [211] first proposed auto-
mated model compression (AMC) to achieve automated
model pruning by using reinforcement learning. Specifi-
cally, AMC models the pruning rate and parameter-related
information of each layer as the action space and state
space, respectively. Then it uses DDPG [212] to train the
agent to automatically determine the pruning rate of each
layer. Motivated by AMC, Gupta et al. [213] developed
PuRL to provide rewards at each pruning step, achiev-
ing sparsity and accuracy comparable to state-of-the-art
(SOTA) methods with a shorter training cycle. Yu et al.
[214] proposed introducing topological information into
the model compression procedure, finding the optimal
compression ratio while ensuring model accuracy instead
of relying solely on the local importance of parameters.
To consider the relationship between convolutional filters
and channels, Wang et al. [215] established MCTS-RL to
prune unnecessary filters before channel pruning, effec-
tively reducing the search space and making channel prun-
ing ratio searching easier. In addition to network pruning,
tensor decomposition [216], data quantization [217] and
knowledge distillation [218] are other effective techniques
for model compression. We do not discuss them here be-
cause they rely on hand-crafted design and expert experi-
ence and are unrelated to the topic of design automation.
Interested readers can refer to [219–222] for further inves-
tigation.

5.3 Summary
To summarize, neural architecture search (NAS) has been
widely applied in design automation for vision systems,
which can automatically search for neural networks and
offer improved performances in various vision tasks. In
this section, we provide a brief overview from different an-
gles to illustrate the connection and difference between the
methods reviewed in this section, as displayed in Fig. 10.

Existing works in NAS mainly focus on three key com-
ponents: (1) the search space [176, 183, 196, 201, 204, 210,
211, 215], which contains all network architecture can-
didates to be chosen, (2) the search strategy [175, 177,
181, 182, 192, 193, 195, 198–200], guiding how to se-
lect a good candidate that meets a specific requirement

Figure 10 A summary of design automation for vision systems with
NAS

from the search space, and (3) the performance evaluation
[197, 202, 203, 205–209, 213, 214], which generates a per-
formance matrix of a candidate and provides guidance in-
formation for the search strategy.

From the view of applied techniques, existing works
primarily lie in three categories: RL-based NAS [148–
151], differentiable NAS [152, 153] and evolutionary NAS
[155–157]. Although RL-based NAS methods can achieve
superior performance, they often require thousands of
GPUs performing several days even on a median-scale
dataset. Differentiable NAS methods are usually more effi-
cient than RL-based methods. However, they often find ill-
conditioned architectures due to improper gradient-based
optimization. Because evolutionary NAS methods are in-
sensitive to local minima and do not require gradient in-
formation, they have shown promising characteristics in
solving complex non-convex optimization problems [223],
even when the objective function’s mathematical form is
unknown [224].

Regarding applications, existing studies typically either
incorporate specific prior information into the construc-
tion of a NAS method or tackle some special issues within
a particular visual task. Taking binocular depth estimation
as an example, existing works [195–197] are proposed to
preset the network architecture as a stereo matching net-
work and search for the internal structures. For embedded
devices, since memory cost and computation latency are
highly considered in practical applications, existing works
[205–209] evaluate these two factors during searching and
encode them in the rewarding functions. In this way, the
proposed NAS method can automatically generate a rea-
sonable network with low memory cost and latency.

6 Integrated design automation for the
“body-brain-eye” of intelligent robots

At present, most studies separately design the mor-
phologies, controllers and vision systems of intelligent
robots. However, strong couplings exist between the de-
signs of the morphologies, controllers, and vision systems
[225]. Therefore, it is necessary to consider the integrated
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design relationship of morphologies, controllers, and vi-
sion systems of intelligent robots. These strong coupling
relationships are also reflected in nature. According to
the law of “survival of the fittest” in biological evolution,
many creatures have evolved a large diversity of eye struc-
tures and corresponding body morphologies. For exam-
ple, the morphologies of birds and primates are very dif-
ferent, and their eye locations on the face are also differ-
ent. It is believed that their brains’ mechanisms of pro-
cessing visual information are also quite different. It is no-
table that through the cooperation of biological popula-
tions, the perception of individual organisms can be fur-
ther improved [226]. If studies in intelligent robots can
automate the design of morphologies, controllers and vi-
sion systems, such as in biological evolution, intelligent
robots with significantly improved performance may be
developed.

Qiao et al. [227–229] took the lead in introducing a
“hand-eye-brain” system of intelligent robots that imi-
tates the mechanism, structure and function of the hu-
man brain, nervous system, and body motor system. In
their proposed method, the role of the “hand” is the
motion control of the intelligent robots. Inspired by the
“muscle-tendon-bone” organization, Qiao et al. [230] es-
tablished a control framework based on synergistic acti-
vation of muscles and an “attractive region in environ-

ment” theory [231, 232]. This framework enabled high-
precision flexible operation under low-precision mor-
phologies and low-precision sensors. The role of “eyes”
is to construct the visual cognitive system of intelligent
robots. Inspired by the brain-inspired visual cognition
and memory mechanism of the hippocampus, Qiao et
al. [233–235] established a new visual recognition frame-
work, ensuring that intelligent robots can achieve higher
recognition accuracy and faster recognition speed. The
role of the “brain” is the decision-making of intelligent
robots. Inspired by the brain’s nervous system, Qiao et
al. [236, 237] introduced a brain-inspired motor deci-
sion model based on emotion regulation modulation. This
model implemented high-level decision-making with an
“accuracy-efficiency-speed” balance. Compared with the
traditional robot design method, the proposed “hand-eye-
brain” system of intelligent robots realizes human-like
manipulation with high precision, flexibility, and robust-
ness.

Inspired by Qiao et al.’s “Hand-Eye-Brain” system of in-
telligent robots, this paper proposes an integrated “Body-
Brain-Eye” design automation for intelligent robots, as il-
lustrated in Fig. 11. Specifically, this paper proposes the
integrated MODENA framework for automatically de-
signing the morphologies, controllers, and vision sys-
tems of intelligent robots, inspired by the evolution of

Figure 11 “Hand-Eye-Brain” system of intelligent robots vs integrated “Body-Brain-Eye” design automation for intelligent robots
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Figure 12 The proposed MODENA for the morphologies, controllers, and vision systems of intelligent robots

biological forms as displayed in Fig. 12. By construct-
ing a modular graph model for the morphologies, con-
trollers, and vision systems of intelligent robots under
digital twin architectures and by applying powerful ca-
pabilities of genetic programming, evolutionary compu-
tation, deep learning, reinforcement learning, and causal
reasoning in optimization, decision-making, and reason-
ing, the MODENA framework can achieve the purpose
of obtaining innovative and optimal designs of intelligent
robots.

In the process of applying MODENA to design the mor-
phologies, controllers, and vision systems of intelligent
robots, the construction of a modular graph model is a
fundamental task. These modules are selected or designed
according to the application scopes, operating characteris-
tics, and functionalities of the designed robotic systems to
meet pre-defined design specifications. In the mechanical
field, the modular graph model contains running modules,
link modules, joint modules, and end-effector modules,
which are used to build the morphologies of intelligent
robots [238]. For the image processing part, the modular
graph models may contain convolutional layers, pooling
layers, and fully connected layers, among others, which
are components of a deep neural network architecture that
can be used to construct the vision systems of intelligent
robots [239]. In the control field, the modular graph model
contains main control units, actuators, detecting units,
among others, which build the controller of intelligent
robots [240]. For the control of swarm robots, the modu-

lar graph model contains basic network motifs that can be
employed to automatically construct gene regulatory net-
work (GRN) models. A multi-objective genetic program-
ming method can be applied to optimize the structure and
parameters of the GRN-based model in parallel so that the
behavior of swarm robots can be controlled [33].

7 Problems and prospects
7.1 Existing problems
In this section, we will explore the various aspects that
should be considered in the integrated design automation
for the “Body-Brain-Eye” of intelligent robots. These in-
clude modeling, optimization, knowledge extraction, en-
vironment perception, swarm robots, and generalization
in unseen scenarios.

(1) Unified Modeling for the “Body-Brain-Eye” of Intel-
ligent Robots

Since intelligent robots are typically multi-energy do-
main physical systems [241, 242], we need to build a uni-
fied graph model to facilitate the design automation pro-
cess. However, for different categories of intelligent robot
modules, we still need to use different modeling tools. For
example, we use a geometric model or a bond graph for
morphologies, a finite state machine or a model predictive
controller for controllers, a gene regulatory network for
swarm control, and a deep neural network model for vision
systems. Although all these models can be abstracted to a
graph model, they are still different modeling languages.
Different parts of the graph models need to be decoded
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separately to obtain the complete intelligent robot. On the
other hand, various modules within the intelligent robots
are usually coupled with each other, and it is still challeng-
ing to express this coupling relationship through a unified
graph model.

(2) Efficient Methods for Solving Robot Optimization
Problems

In the integrated “Body-Brain-Eye” design automation
process of intelligent robots, various types of decision vari-
ables (e.g., continuous variables, discrete variables) [243]
are included, along with various types of optimization ob-
jectives and constraints with different difficulty types [46].
The calculation of objectives or constraints is usually time-
consuming [244], and in most cases, external simulators
need to be called, making it a computationally expensive
optimization problem. Therefore, efficiently solving these
constrained multi-objective optimization problems with
mixed decision variables and expensive fitness evaluation
is a challenging task.

(3) Knowledge Extraction during the Design Process
The optimization of integrated “Body-Brain-Eye” sys-

tems of intelligent robots in various experimental scenar-
ios generates a vast amount of data, including intermedi-
ate data that contain crucial design knowledge as well as
optimization-related knowledge [245]. To extract knowl-
edge and rules from the data with good interpretabil-
ity, genetic programming methods are effective. How-
ever, their accuracy is limited. Deep learning methods,
on the other hand, offer high model accuracy, but their
black-box characteristics pose a problem for model in-
terpretability. A crucial challenge in creating an iterative
optimization system with feedback is to identify causal
relationships within and between modules of an intelli-
gent robot to gain innovative design knowledge automati-
cally.

(4) Multi-modal Information Fusion for Environment
Perception

The working environments faced by intelligent robots
are often complex and varied. Therefore, intelligent robots
should have the capability to learn actively and continu-
ously optimize their systems during operations, make ef-
ficient and accurate judgments, and respond quickly and
appropriately in complex and dynamic working environ-
ments. Hence, solving the problem of combining multi-
modal architecture search and active vision technology to
endow robots with the ability to integrate multi-sensor in-
formation and actively optimize their hardware system in
real-time is essential.

(5) Design Automation for Swarm Robots
The control of swarm robots is witnessing rapid progress

in applications, which can be divided into two categories:
centralized control and decentralized control. Centralized
control is a natural and widely accepted approach, but
it faces many challenges when the size of the swarm in-
creases to a certain level. For example, a large system with

centralized control has insufficient fault tolerance. Failures
of just a few individuals may lead to the failure of the whole
system’s functionality. Computational costs may also in-
crease dramatically, making it difficult to react to unex-
pected factors timely. As a result, decentralized control has
received increasing attention recently and has gradually
become a new mainstream. The key idea here is to design
a proper (and in most cases a common) control scheme for
each robot in the swarm so that the swarm as a whole can
accomplish the specified tasks. It is obviously a challenge
to do so, especially when the size of the swarm is large. To
address this challenge, design automation approaches play
an increasingly important role [246], where MODENA can
also contribute greatly [33]. To design and manage such a
complex UAV swarm system, the key challenge is to define
a rigorous engineering approach to program each robot so
that the UAV swarm behaves in a desired manner. How to
distill the basic units of the swarm behavior strategy and
thus carry out the research on the design automation of
unmanned swarm behavior strategy is another emerging
issue.

(6) Poor Generalization in Unseen Scenarios
Existing methods mostly automatically generate a model

and utilize this fixed model for practical applications.
However, this paradigm usually results in unsatisfactory
performance, because the model is unable to generalize
well to unseen testing scenarios that are different from the
training one. Typically, this domain gap between training
and testing scenarios is common in real-world applica-
tions since the environment is changing all the time, espe-
cially for vision systems. Therefore, how to design a NAS
method to search for a robust vision model that can per-
form consistently among different scenes is an urgent issue
to be addressed.

7.2 Future directions
Although significant progress has been made in modu-
lar design automation over the past two decades, several
important issues still need to be addressed, and new ap-
plication areas are emerging. The following subsections
will discuss potential future research directions from two
perspectives: theoretical studies and practical applica-
tions.

7.2.1 Theoretical studies
(1) Multi-view Unified Modeling of Intelligent Robots

Building a unified model of the morphology, controller
and vision system of an intelligent robot is an effective ap-
proach to facilitate the design of automation processes.
Currently, morphology, controller and vision systems are
usually represented by different modeling tools and com-
posed of various modules [241, 242]. For example, when
designing a mechanical system, the modeling language
might be a bond graph. When designing an unmanned
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swarm controller, the modeling language may be a finite
state machine or a gene regulatory network. When design-
ing a vision system, the modeling language may be a deep
neural network. Different modeling languages have differ-
ent application scopes and characteristics, and it is chal-
lenging to capture the coupling relationships among the
modules represented by them. Therefore, constructing a
multi-view unified modeling tool that can represent the
morphology, controller and vision systems effectively and
efficiently is an essential direction for the design automa-
tion of intelligent robots.

(2) Surrogate-assisted Constrained Multi-objective Op-
timization for Intelligent Robots

The optimization of intelligent robots often requires the
simultaneous consideration of multiple conflicting design
objectives and a large number of constraints. In addition,
the calculations of objectives and constraints are usually
time-consuming and often require the invocation of ex-
ternal simulation software. Therefore, the optimization
problem of an intelligent robot can be defined as an ex-
pensive constrained multi-objective optimization prob-
lem [46, 247]. In the research of MODENA for intelli-
gent robots, constrained multi-objective evolutionary al-
gorithms are gradually becoming a popular approach to
solve the above multi-objective optimization problems.
In the study of constrained multi-objective evolutionary
algorithms, the conventional view is that each infeasible
region is equally important. Only the constraints repre-
sented by infeasible regions close to the unconstrained
Pareto front affect the true Pareto front. Therefore, how
to take advantage of features like this to deal with the con-
tradiction among convergence, diversity and feasibility has
become a major consideration in designing constrained
multi-objective optimization algorithms. In terms of sur-
rogate models, considering an adaptive surrogate model
approach by combining global and local surrogate mod-
els for optimization objectives and constraints to establish
novel constrained multi-objective evolutionary algorithms
is another direction worthy of in-depth investigation in the
future.

(3) Knowledge Extraction in Design Automation
The knowledge extracted in the design automation pro-

cess of intelligent robots involves both explicit knowledge
and implicit knowledge. Explicit knowledge is also called
human knowledge, which can often be directly understood
by human experts and has very good interpretability. On
the other hand, implicit knowledge is usually not directly
understandable by humans, but can be stored and inferred
by machines. Thus, it is also called machine knowledge,
which has the potential to be understood by humans one
day in the future. Symbolic regression, a method based on
genetic programming, is usually used for explicit knowl-
edge mining. This method can automatically mine the ex-
plicit knowledge contained in the data by manually defin-
ing a set of functions and terminals using prior knowledge

of the problem domain. Causal reasoning, an emerging re-
search field, can also be used to obtain explainable knowl-
edge. This can, in turn, guide the search for expensive con-
strained multi-objective evolutionary algorithms and the
adjustment of the problem formulation of the intelligent
robot optimization problems.

(4) MODENA for Intelligent Robots Based on Digital
Twins

MODENA for intelligent robots necessitates numer-
ous simulations and experiments in both virtual and real-
world environments. These efforts can be significantly
expedited through the application of emerging digital
twin technology. This technology creates a unique type of
metaspace that replicates the physical laws of space with
exceptional precision and is a subset of the Metaverse.
Traditional methods of designing intelligent robots typ-
ically involve a laborious and time-consuming trial-and-
error process. Conversely, implementing the digital twin
approach enables the faithful mapping of the robot from
real space to virtual space in four dimensions: geometry,
contact dynamics, behavior, and rules. Moreover, it al-
lows for the arbitrary adjustment of the morphology, con-
troller, and vision systems, generating practically unlim-
ited design candidates whose optimization is efficiently
supported through the integration of the powerful capa-
bilities of machine learning and evolutionary computing.
Additionally, machine learning can be used to mine knowl-
edge and rules from data generated during the design pro-
cess, which can then be utilized in future design activities.
Therefore, exploring how to fully harness the power of dig-
ital twin technology for MODENA is another crucial area
of study.

(5) Domain Adaptation and Generalization in Design
Automation

Since the poor generalization ability of designed models
to unseen scenarios is an urgent issue, especially for vision
systems, model robustness becomes an important factor
when designing a NAS method. A promising solution is
to introduce domain adaptation [248] and generalization
[249] evaluation in the design procedure, which focuses
on transferring learned knowledge in training scenarios to
unseen testing ones. Specifically, we can introduce an addi-
tional evaluation matrix for generalization ability for can-
didate model selection. In this way, the search strategy can
choose a model with a particular trade-off that can achieve
good performance and be robust to noisy and varied envi-
ronments. There are a few works [250–252] that concen-
trate on this appealing direction.

(6) Active and Continual Learning in Design Automa-
tion

In addition to designing a robust model, another solu-
tion to tackle the poor generalization issue is to perform
online learning in testing scenarios, which can allow the
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model to quickly adjust its parameters and adapt to un-
known environments. To achieve effective online learn-
ing, there are two key problems to be solved. First, the
model needs to figure out what to learn in a given environ-
ment. To address this, active vision and learning [253, 254]
can guide models to explore valuable targets and learn
superior decision-making behaviors, as studied in differ-
ent applications, including robot exploration [255–257],
unmanned aerial vehicle (UAV) swarm localization, and
other tasks [258–260]. Second, the model needs to over-
come the catastrophic forgetting issue during online learn-
ing. Specifically, when the model learns new knowledge
in a new scene, the previously learned knowledge will be
dramatically forgotten, leading to a severe overfitting is-
sue and making the model harder to generalize to an-
other unseen scene. To tackle this issue, continual learn-
ing [261] has been proposed to guide models to continually
learn over time by accommodating new knowledge while
retaining previously learned experiences. Several works
[262–264] have tried to introduce continual learning in
NAS.

To summarize, it is important and desirable for a model
to automatically optimize itself and adapt to varied and un-
seen scenarios, achieving higher levels of intelligence. This

remains as an open and attractive problem in the design
automation of intelligent robotic vision systems.

7.2.2 Practical applications
In this section, we present some exemplary scenarios to il-
lustrate the potential benefits of applying MODENA. For
instance, power plants serve as the cornerstone of the
power system, and their operational health plays a cru-
cial role in ensuring the system’s safety. The intricate lay-
out of pipelines in power plants makes manual inspec-
tion challenging. Moreover, manual inspection is vulner-
able to problems such as missed inspections, false inspec-
tions, and concerns about the personal safety of inspec-
tors, which can be influenced by various factors, such as
labor intensity and weather conditions. With the advent of
heterogeneous unmanned swarm technology, the integra-
tion of flying inspection robots, ground inspection robots,
and pipeline leak-detecting and repairing robots has be-
come technically feasible, offering significant advantages
over manual inspections. This integration may also be-
come a hot research theme in the future, as illustrated in
Fig. 13. Therefore, we suggest considering the following
prospects for future research in this paper.

(1) Design Automation for the Morphologies of Un-
manned Swarm Systems

Figure 13 The integrated “Body-Brain-Eye” design automation for heterogeneous unmanned swarm system of inspection and repair robots used in
the power plant
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Unmanned swarm systems need to accomplish multi-
ple tasks, and the relationship between their overall per-
formance and component properties is extremely com-
plex, which makes the morphological structure design of
unmanned swarm systems complicated. The MODENA
method provides a new idea for the morphological struc-
ture design of unmanned swarm systems. For example, in
the power plant environment, the unmanned swarm con-
tains flying inspection robots, ground inspection robots
and pipeline leak-detecting and repairing robots. Their
morphologies differ greatly, with different application
scopes, operation characteristics, functions and perfor-
mances. Designing corresponding morphological models
based on the application scopes, operational characteris-
tics, functions, and performances of various robots within
unmanned swarm systems to achieve superior overall per-
formance is a challenge and a focus of future research.

(2) Design Automation for the Environmental Percep-
tion and Cognitive Systems of Unmanned Swarm Systems

In complex environments with high dynamics, uncer-
tainty and resource constraints, unmanned swarm systems
need to achieve distributed sensing and cognition of the
environment through multi-modal interaction techniques.
For example, in the power plant environment, aerial in-
spection robots equipped with vision sensors, ground in-
spection robots equipped with high-precision LIDAR and
vision sensors, and ground repair robots equipped with in-
frared vision sensors work together to achieve rapid and
precise localization of power plant faults and timely repair
through data obtained from different sensors. It is crucial
to design a proper model that can process heterogeneous
sensor data to achieve efficient perception and cognition of
complex environments. Therefore, research on the design
automation of the visual perception model is an important
direction for distributed environment perception and cog-
nition.

(3) Design Automation for the Controllers of Unmanned
Swarm Systems

Because the environment faced by an unmanned swarm
system is uncertain or unpredictable, it is difficult to de-
sign algorithms that can control swarm behaviors based
on accurate models. In swarm control, the biggest chal-
lenge is to design a proper control scheme for each robot so
that the swarm as a whole can generate collective behavior
that can accomplish the pre-defined task for the swarm.
Since each robot in the swarm follows the same behav-
ioral model, designing controllers using traditional meth-
ods faces great difficulty. Design automation methods can
play a significant role here since they can generate and ex-
plore a large number of potential candidates with the help
of digital twin technology. Design automation techniques
can also identify the optimal ones that satisfy the specified
task requirements more efficiently by using metaheuris-
tic methods, such as evolutionary computation. Therefore,

the design automation of behavioral control strategies for
UAV swarms based on evolutionary algorithms is another
important research direction.

8 Conclusion
In this paper, we present a comprehensive survey of MOD-
ENA for designing the morphologies, controllers and vi-
sion systems of intelligent robots. Given the increasing
complexity of working environments and the diversifi-
cation of tasks, there is a growing need for MODENA
to design the “Body-Brain-Eye” of intelligent robots. In
the MODENA approach, the robot system’s morphology,
controller, and vision systems can all be expressed as a
graphical model. By automatically exploring the design
space of the graphical model, a set of design candidates
of intelligent robots that satisfy pre-defined functions and
requirements can be obtained. The key components in
MODENA include surrogate-assisted constrained multi-
objective evolutionary algorithms (CMOEAs), topological
search algorithms such as genetic programming, neural ar-
chitecture search, and techniques for knowledge extrac-
tion during the design process, among others. MODENA
is a core technology that can significantly improve the de-
sign efficiency and performance of robots, and it will be-
come an increasingly important research theme in the fu-
ture for designing either individual or swarm robots, just
as EDA has played an important role in both academia and
industry.
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