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Abstract

One major challenge for semantic segmentation in real-
world scenarios is only limited pixel-level labels available
due to high expense of human labor though a vast volume
of video data is provided. Existing semi-supervised meth-
ods attempt to exploit unlabeled data in model training, but
they just regard video as a set of independent images. To
better explore semi-supervised segmentation problem with
video data, we formulate a semi-supervised video semantic
segmentation task in this paper. For this task, we observe
that the overfitting is surprisingly severe between labeled
and unlabeled frames within a training video although they
are very similar in style and contents. This is called inner-
video overfitting, and it would actually lead to inferior per-
formance. To tackle this issue, we propose a novel inter-
frame feature reconstruction (IFR) technique to leverage
the ground-truth labels to supervise the model training on
unlabeled frames. IFR is essentially to utilize the inter-
nal relevance of different frames within a video. During
training, IFR would enforce the feature distributions be-
tween labeled and unlabeled frames to be narrowed. Con-
sequently, the inner-video overfitting issue can be effectively
alleviated. We conduct extensive experiments on Cityscapes
and CamVid, and the results demonstrate the superiority
of our proposed method to previous state-of-the-art meth-
ods. The code is available at https://github.com/
jfzhuang/IFR.

1. Introduction
As a fundamental task in computer vision, image seman-

tic segmentation has benefited numerous downstream appli-
cations. However, the training data for semantic segmen-
tation requires pixel-level labeling, which is very expen-
sive and time-consuming. Recently, semi-supervised im-
age segmentation (SSIS) is proposed to train models with
a limited number of labeled images and additional unla-
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Figure 1. Illustration of expanded training data. As commonly
adopted in SSIS, only one frame from each video is sampled and
used as the training data. These frames are divided into labeled and
unlabeled ones. To fully utilize video data, we propose to supple-
ment the remaining video frames into unlabeled data for training.

beled images. Besides regular supervised learning on la-
beled images, SSIS methods usually construct extra super-
vision signals for unlabeled images, e.g., consistency con-
straint [17, 23] and pseudo label [4, 32]. It is shown that
they can bring considerable performance improvement on
the challenging datasets, e.g., PASCAL VOC [8].

In real-world scenarios, we can usually collect the video
data conveniently and economically, but only a few videos
would be annotated with a single frames due to the high
expense of human labor. For example, Cityscapes [6] as a
representative dataset contains 2975 videos in the training
subset, and only the 20th frame in each video is annotated.
That is, there are actually many unlabeled frames that can
be utilized for model training. However, the existing SSIS
methods [4,17,23] do not fully exploit video data, in which
only one frame is sampled from each video for model train-
ing and a large amount of unlabeled frames are ignored. To
better explore unlabeled videos, we propose to expand the
training data setting of SSIS by leveraging remaining video
frames, as shown in Figure 1.

A nature way to utilize extra unlabeled frames is to per-
form SSIS with adding the remaining frames into unlabeled
training data. Here we particularly implement two SOTA
SSIS methods, i.e., CAC [17] and CPS [4]. Table 1 gives the
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Method Sampled Frames All Frames

Baseline 66.00 -
+ CAC 69.70 69.80 (+0.10)
Baseline 70.32 -
+ CPS 74.39 74.66 (+0.27)

Table 1. Performance of SOTA methods with all video frames.
We implement CAC [17] and CPS [4] by adding remaining video
frames into unlabeled training data. However, no obvious im-
provement is gained. Here, Cityscapes with 1/8 labeled data is
used, and Deeplabv3+ with the ResNet50 backbone is adopted as
segmentation model. The baseline performances are different due
to adopting different training settings.

ID Accel + CAC + CPS

T

20 81.5 80.1 79.7
15 69.8↓11.7 69.9↓10.2 68.1↓11.6
10 65.3↓16.2 65.5↓14.6 65.1↓14.6
5 60.6↓20.9 61.9↓18.2 61.8↓17.9

V 20 49.8↓31.7 51.1↓29.0 51.3↓28.4

Table 2. Performance on Cityscapes-VPS. T and V represent
the training and validation subsets, respectively. ID indicates the
frame id. The model is trained on the 20th frame in the train-
ing subset. ↓ represents the accuracy gap comparing to that on
the training frames. Performance gap exists not only between two
subsets but also within each training video.

results on Cityscapes. It can be seen that there is no obvious
performance improvement. The primary reason may be the
homogenization of video data, i.e., the contents of different
frames within a video are often similar. Given one frame
from each video, therefore, the existing semi-supervised
methods cannot capture much more information from the
remaining frames using a simple extension on training data.
Evidently, how to effectively boost the segmentation perfor-
mance with unlabeled video data is challenging.

Next we first formulate the semi-supervised video seg-
mentation (SSVS) task addressed in this work. There are
two main differences comparing to the SSIS task. The first
is the training data. During training, only one frame sam-
pled from each video is used in SSIS, while all video frames
are accessible in SSVS, as shown in Figure 1. The second
is the baseline model. SSIS focuses on improving image
segmentation models, e.g., PSPNet [28], while SSVS con-
centrates on video segmentation models, e.g., Accel [15].
Since the video models are usually designed for exploiting
video characteristics, e.g., feature propagation by utilizing
the temporal consistency, we particularly consider the learn-
ing method by further exploring video data in this paper.

The overfitting is a key challenge in SSIS, as demon-
strated in existing works [17, 23]. Here we investigate the

Unlabeled Frames

Labeled Frames

Test Video

Overfitting

Inner-Video Overfitting

Training Video

Figure 2. Illustration of inner-video overfitting. The commonly
concerned overfitting issue is the performance gap between train-
ing and test videos. However, we find that overfitting also exists
between labeled and unlabeled frames within each training video,
which is called inner-video overfitting.

overfitting issue in SSVS with a popular VSS model, i.e.,
Accel [15]. In particular, we conduct a study experiment
on the Cityscapes-VPS dataset [16]. The dataset contains
500 videos, where each video contains 30 frames and every
5 frame is annotated. We randomly select 100 videos for
training and the remaining are for validation. To be specific,
only the annotation on the 20th frame is used for each video
during training. We evaluate the model on both the training
and validation subsets, as shown in Table 2. From the re-
sults, we have two observations. First, the performance gap
exists between the training and validation frames, which is
the commonly concerned overfitting issue. Second, the gap
also occurs between the training and other frames within the
training videos, though they have no significant visual dif-
ference as shown in Figure 2. We called this phenomenon
as inner-video overfitting.

In this work, we argue that the inner-video overfitting
is mainly caused by the lack of accurate supervision sig-
nals for unlabeled frames, which results in inconsistent per-
formance. Specifically, the model trained on the labeled
frames is supervised by the ground-truth labels, which can
provide accurate semantic signals. But the model trained
on unlabeled frames is either not considered as in Accel or
supervised by some constructed signals. Actually, these sig-
nals can only provide an indirect constraint like consistency
in CAC or noisy semantic supervision like pseudo labels in
CPS, which cannot effectively supervise model training on
unlabeled frames.

Then a natural question arises: can we use ground-truth
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labels to train model on the unlabeled frames? Here we
particularly utilize the internal relevance of different frames
within a video, as they share similar semantic contents and
styles. Following this idea, we propose a novel inter-frame
feature reconstruction (IFR) method. The main idea is to re-
construct features of the labeled frame fL using the informa-
tion from features of the unlabeled frame fU . After that, we
apply supervised learning on the reconstructed feature fR
with the ground-truth label, which actually imposes super-
vision on fU implicitly. During training, fR would become
similar to fL as they are supervised by the same objective.
As a result, the feature distribution discrepancy between fL
and fU would be narrowed, and further the inner-video over-
fitting would be alleviated. In this way, we can also improve
the generalization capacity of the model on unseen scenes,
i.e., testing data. In one word, IFR has two main advantages
comparing to other methods. First, it uses the ground-truth
labels to train model on unlabeled data rather than the gen-
erated pseudo labels [4] or consistency constraint [17, 23],
which can provide much more accurate semantic supervi-
sion. Second, it collaborates the training on labeled and
unlabeled data through the same objective, which are pro-
cessed separately in the existing methods.

We experimentally evaluate the proposed method on the
Cityscapes and CamVid datasets. The results validate the
effectiveness of our IFR in alleviating the inner-video over-
fitting issue, and it can bring a significant performance
improvement for mainstream video semantic segmentation
methods. The contributions of this work are summarized as
follows.

• We formulate the semi-supervised video semantic seg-
mentation task and discover the inner-video overfitting
issue is one of the main challenges damaging the per-
formance of SSVS.

• We propose a novel inter-frame feature reconstruction
method to alleviate the inner-video overfitting and fur-
ther boost the performance. IFR essentially utilizes the
internal relevance of different frames within a video.

• We experimentally evaluate the effectiveness of our
proposed method, and the results on Cityscapes and
CamVid demonstrate the superiority of our method to
previous state-of-the-art methods.

2. Related Work
Image semantic segmentation. Image semantic segmen-
tation targets to assign each pixel in scene images a se-
mantic class, which is a fundamental yet rather challeng-
ing task. Modern deep learning methods for semantic seg-
mentation are mainly based on fully convolutional network
(FCN) [20]. FCN firstly uses convolutional layers to replace
fully-connected layers and can achieve better performance.

To further enhance segmentation results, the dilation con-
volution [3], pyramid pooling [28], and attention mecha-
nism [10,13,29] are proposed to model object relationships
and aggregate context information. Besides, HRNet [25] is
designed to maintain high resolution feature maps. With the
development of transformer, some transformer-based seg-
mentation models [5, 19, 26] are proposed and outperform
current CNN-based networks. Despite the success of these
models, they are often impeded in practical deployment due
to requiring sufficient pixel-wise annotations for learning.

Semi-supervised semantic segmentation. To achieve
good representation learning with limited annotations,
semi-supervised semantic segmentation is studied by ex-
ploring unlabeled data. Existing methods can be roughly
divided into three families. The adversarial based methods,
e.g., AdvSemiSeg [14] and S4GAN [21], utilize a discrim-
inator to distinguish the confidence maps from labeled and
unlabeled data predictions. The consistency based meth-
ods enforce the consistency of the predictions or interme-
diate features with various perturbations. The perturbations
can be conducted on input images, e.g., CutMix [9], Class-
Mix [22], and CAC [17], and feature space, e.g., CCT [23].
The self-learning based methods generate pseudo segmen-
tation maps on unlabeled data. [2, 11, 27] propose to gener-
ate pseudo labels in an offline manner and retrain the model
iteratively. While PseudoSeg [32] and CPS [4] follow the
FixMatch [24] scheme and design an online pseudo label-
ing mechanism. Note that Naive-Student et al. [2] proposes
to leverage self-learning in extra unlabeled video sequences
to improve the performance of full-supervised image seg-
mentation models. Different from that, our work focuses
on improving representation learning of video segmentation
models with limited annotations.

However, existing methods are not designed for video
data, which only regards unlabeled videos as a collection
of independent images. As shown in Table 1, more extra
frames cannot bring considerable improvement due to se-
vere data homogeneity. In this paper, we propose a novel
approach to explore the internal relevance of video data.

Video semantic segmentation. Video semantic segmen-
tation aims to predict pixel-level semantics for each video
frame. Different from static images, videos embody rich
temporal information that can be exploited to improve se-
mantic segmentation performance. DFF [30] firstly pro-
poses feature propagation to reuse key frame features un-
der the guidance of estimated optical flows, which can re-
duce the average computational cost. Inspired by DFF,
Accel [15] proposes an adaptive fusion policy to effec-
tively integrate the predictions from the key and current
frames. DAVSS [31] proposes to correct the distorted fea-
tures caused by inaccurate optical flow when propagating
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Figure 3. Overview of Inter-Frame Feature Reconstruction. For a labeled video, we sample the annotated frame x̂L
t1 , a random frame

xL
t2 and the given label yt1 to construct a training sample. t1 and t2 represent different timestamps. During training, after feature extraction,

we generate class prototypes on ft2 and fst2 based on pseudo label y̌t2 . Then, prototypes Pt2 and P s
t2 are used to reconstruct ft1 , resulting

in ˜ft2 and ˜fst2 . Finally, cross entropy loss ˜L and ˜Ls are calculated on logits Lts and ˜Lts with yt1 , respectively. To be notice, IFR can also
be applied on unlabeled videos by only replacing label yt1 with pseudo label y̌t1 of the sampled frame. Best viewed in color and zoom in.

features. Besides the feature propagation paradigm, some
recent works propose to improve the performance of light-
weight models with temporal constraints [7, 18] and atten-
tion mechanism [12].

Different from the image-based methods, video segmen-
tation methods can use unlabeled frames nearby the labeled
frame for training. However, existing methods still require
sufficient annotated frames, and other unlabeled videos are
not fully explored. To the best of our knowledge, this work
is the first attempt to design a semi-supervised learning
method for video segmentation methods.

3. Method

3.1. Problem Definition

In this work, we focus on the semi-supervised video se-
mantic segmentation problem. Formally, assume a small
set of labeled videos with one frame annotated and a
large set of unlabeled videos are provided. Let V =
{x1, · · · , xl} represents l frames in a video with xi as
the ith frame with spatial resolution of H × W . Let
DL = {(VL

1 , x̂1, y1), · · · , (VL
nL

, x̂L, ynL
)} represents the

nL labeled videos, where x̂i is the annotated frame of
the ith video, yi ∈ R

C×H×W corresponds to the pixel-
level one-hot label, and C is the number of classes.
Let DU = {VU

1 , · · · ,VU
nU

} represents the nU unlabeled
videos. Besides, another set of labeled videos DV =
{(VV

1 , x̂1, y1), · · · , (VV
nV

, x̂nV
, ynV

)} is used for perfor-

mance evaluation.
Our work aims to learn a segmentation model from DL

and DU , and generalize it to DV . Generally, a segmenta-
tion network Net = NetB ◦ NetC can be regarded as a
composition of the backbone NetB for feature extraction
and the classifier NetC for semantic prediction. Follow-
ing previous methods [4, 9, 17, 22, 23, 32], the objective of
semi-supervised learning can generally be summarized as
two loss functions. The first one is a regular cross-entropy
loss on the labeled data:

Lsup = −E(x̂,y)∈DL

H×W∑
i=1

C∑
c=1

y(i,c) log p(i,c), (1)

where p = Net(x̂) and p(i,c) represents the softmax prob-
ability of the pixel i belonging to the cth class. The sec-
ond loss aims to train model on unlabeled data with some
constructed supervision signals, e.g., consistency constraint
or pseudo label, which is denoted by Lunsup in this paper.
Then the overall training objective can be presented as fol-
lows

L = Lsup + λLunsup, (2)

where λ is a trade-off parameter.

3.2. Inter-Frame Feature Reconstruction

In this work, we mainly focus on addressing the inner-
video overfitting and present a novel inter-frame feature re-
construction (IFR) method. Instead of leveraging the la-
beled and unlabeled data via different loss functions, IFR
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involves unlabeled frames in supervised learning of labeled
frames and consequently can narrow the feature distribu-
tion discrepancy between different frames within a video.
The overview of our solution is illustrated in Figure 3. To
make it clear, we first elaborate on the core component of
our method on labeled video data, and then explain two ex-
tensions to strong augmented data and unlabeled video data.

Specifically, we sample an annotated frame x̂L
t1 with the

label yt1 and an unlabeled frame xL
t2 from a labeled video

to construct a training sample, denoted by (xt1 , xt2 , yt1 ),
where the superscripts L andˆare omitted to simplify the no-
tations. Firstly, we extract the features on xt1 and xt2 with
a shared backbone, resulting in ft1 and ft2 . The key idea
of our IFR is to reconstruct ft1 with the information of ft2
and then conduct supervised learning with the given labels
on the reconstructed features. Since different frames within
a video contain similar semantic content, we consider using
the class prototypes generated from ft2 for feature recon-
struction. Here the class prototypes refer to the class-wise
feature centroids that commonly represent class semantics.
Specifically, we calculate the pseudo label y̌t2 of ft2 as

y̌t2 = argmax(NetC(ft2)). (3)

Then, we group the pixel-wise features in ft2 belonging to
the same class according to y̌t2 , i.e.,

P
(c)
t2 =

∑
i f

(p)
t2 ∗ �(y̌(i,c)t2 == 1)∑
i �(y̌

(i,c)
t2 == 1)

, (4)

where � is an indicator function and y̌
(i,c)
t2 represents the

one-hot label of pixel i belonging to the cth class. To repre-
sent ft1 with the generated class prototypes Pt2 , we consider
adopting the commonly used attention mechanism

s(i,c) = f̄
(i)
t1

T P̄
(c)
t2 , (5)

s(i,c) =
es

(i,c)/τre∑C
c=1 e

s(i,c)/τre
, (6)

f̃
(i)
t2 =

C∑
c=1

s(i,c)P
(c)
t2 , (7)

where ¯f (i) = f (i)/‖f (i)‖ is the L2 normalization. Here we
adjust the softmax operation by dividing by a temperature
τre.

After that, we generate the classification probabilities
p̃ = σ(NetC(f̃t2)), where σ indicates a softmax function.
To perform supervised learning similar to labeled frames,
we adopt the cross-entropy with the given label yt1 as fol-
lows

L̃ = −E

H×W∑
i=1

C∑
c=1

y
(i,c)
t1 log p̃(i,c). (8)

Then the overall training objective can be presented as

L = Lsup + λL̃. (9)

During training, f̃t2 would become similar to ft1 since they
are enforced by the same loss function and supervision sig-
nal. Therefore, the model is encouraged to narrow the distri-
bution between ft2 and ft1 , i.e., keep the feature consistency
of different frames within a video.

3.3. Extended Solution

Strong Augmented Data. Existing works [9, 22, 23, 27]
have shown that strong data augmentation on unlabeled
data can effectively improve model generalization in semi-
supervised learning. As shown in the lower half of Figure 3,
we extend the IFR training on strong augmented frames.
Specifically, taking the labeled video data as an example,
we impose strong augmentation, e.g., color jitter, on xL

t2 to
get xLs

t2 . After feature extraction, we also use fst2 to per-
form feature reconstruction. Differently, when generating
the prototypes, we use the pseudo label of ft2 rather than fst2
for more accurate semantic prediction. After that, a regu-
lar IFR training procedure is adopted with L̃s

L. Essentially,
we impose an implicit consistency constraint on ft2 and fst2 ,
since we narrow their distribution discrepancy with ft1 . Fi-
nally, the overall training objective can be presented as

L = Lsup + λ(L̃+ λsL̃
s), (10)

where λs is an extra control parameter.

Unlabeled Video Data. By far, our proposed IFR is only
applied to labeled videos. To further explore a large amount
of unlabeled videos, we make a simple extension to the IFR
solution. Specifically, we randomly sample two frames xU

t1
and xU

t2 from each unlabeled video. Similarly, strong aug-
mentation is applied on xU

t2 , resulting in xUs
t2 . Since no

frame label is provided, we need to build supervision sig-
nal for reconstructed features. In particular, we adopt the
pseudo label y̌t1 of xU

t1 . Then a training sample (xU
t1 , xU

t2 ,
xUs
t2 , y̌t1 ) is obtained and naturally it can be used in the IFR

training procedure as for the labeled samples. Finally, the
overall training objective can be presented as

L = Lsup + λL(L̃L + λsL̃
s
L) + λU (L̃U + λsL̃

s
U ), (11)

where subscripts L and U represent loss terms calculated on
the labeled and unlabeled videos, respectively. λL and λU

correspond to their trade-off parameters.

4. Experiments
4.1. Dataset

Cityscapes [6] is a representative dataset in semantic
segmentation and autonomous driving domain. It focuses
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Method 1/30 (100) 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

Accel 45.73 52.10 57.12 60.55 62.83
+ CCT [23] 48.05 (+2.32) 53.25 (+1.15) 58.88 (+1.76) 62.00 (+1.45) 64.02 (+1.19)
+ CAC [17] 48.83 (+3.10) 54.56 (+2.46) 58.55 (+1.43) 62.78 (+2.23) 63.87 (+1.04)
+ CPS [4] 48.97 (+3.24) 54.69 (+2.59) 58.97 (+1.85) 62.43 (+1.88) 63.74 (+0.91)
+ Ours 52.86 (+7.13) 56.39 (+4.29) 60.08 (+2.96) 63.45 (+2.90) 64.53 (+1.70)

Table 3. Comparison with state-of-the-art methods on the Cityscapes validation subset under different partition protocols. Accel is
adopted as the supervised baseline that is only trained on labeled data. Our method gets more gains especially for few labeled training data.

Method 1/30 (15) 1/16 (29) 1/8 (58) 1/4 (117) 1/2 (234)

Accel 42.37 47.57 50.78 56.40 59.37
+ CCT [23] 47.09 (+4.72) 52.45 (+4.88) 54.50 (+3.72) 58.69 (+2.29) 61.58 (+2.21)
+ CAC [17] 46.85 (+4.48) 52.16 (+4.59) 54.03 (+3.25) 59.67 (+3.27) 63.17 (+3.80)
+ CPS [4] 46.05 (+3.68) 52.04 (+4.47) 55.30 (+4.52) 59.02 (+2.62) 62.49 (+3.12)
+ Ours 49.50 (+7.13) 53.71 (+6.14) 57.37 (+6.59) 61.27 (+4.87) 63.86 (+4.49)

Table 4. Comparison with state-of-the-art methods on the CamVid test subset under different partition protocols. Accel is adopted as
the supervised baseline that is only trained on labeled data. Our method gets more gains especially for few labeled training data.

on semantic understanding to urban street scenes. The train-
ing and validation subsets contain 2, 975 and 500 videos,
respectively, and each video contains 30 frames at a resolu-
tion of 1024 × 2048. The 20th frame in each is annotated
by pixel-level semantic labels with 19 categories.

CamVid [1] also focuses on the semantic understand-
ing to urban street scenes, but it contains less data than
Cityscapes. It has four driving videos and each video con-
tains frames ranging from 3, 600 to 11, 000 at a resolution
of 720× 960. Every 30th frame of videos is annotated with
11 semantic classes, which results in a total of 701 samples.
Similar to Cityscapes, we split videos into 701 videos and
each video contains 30 frames. All videos are divided into
the trainval set with 468 videos and test set with 233 videos.

We follow the partition protocols of CutMix [9] and
CPS [4] and divide the whole training set via randomly
sub-sampling 1/2, 1/4, 1/8, 1/16, and 1/30 of all training
videos, i.e., 2975 videos in Cityscapes and 468 videos in
CamVid, as the labeled set and regard the remaining videos
as the unlabeled set. In the implementation, we follow [2]
to add the labeled set into the unlabeled set for unsupervised
learning, which can slightly improve performance. Follow-
ing [9, 14, 21–23], we apply bilinear interpolation to resize
every video frame in Cityscapes and CamVid to 512 ∗ 1024
and 360 ∗ 480 for the efficiency of training and inference,
respectively.

4.2. Implementation Details

Here we particularly adopt Accel [15] as video seman-
tic segmentation architecture due to its good performance.
It consists of two segmentation branches, i.e., a heavy ref-
erence branch and a light-weight update branch, an optical

flow network, and a score fusion layer. To be consistent
with previous works [9,17,23], we adopt PSPNet [28] to im-
plement the segmentation branches. Specifically, ResNet-
101 and ResNet-18 are adopted as the backbone of refer-
ence and update branches, respectively.

Accel uses a two-stage training procedure. In stage one,
two segmentation branches are trained separately on a spe-
cific dataset, e.g., Cityscapes [6]. To improve represen-
tation learning with limited annotations, we apply semi-
supervised methods to this stage. The segmentation model
is trained using a SGD optimizer with a momentum of 0.9
and a weight decay of 10−4. The learning rate is set at 10−3

for the backbone parameters and 10−2 for others, which is
annealed following the poly learning rate policy. In stage
two, two segmentation branches are fixed, and the classifier
is jointly trained with the optical flow network and the score
fusion layer by following the standard supervised learning
paradigm. The training settings follow the original Accel
implementation. Actually, the training in the stage two also
suffers from limited annotations. However, how to design
a suitable semi-supervised learning method for optical flow
network is beyond the scope of this work, which can be ex-
plored in the future.

We evaluate the segmentation performance on the vali-
dation videos, i.e., validation subset in Cityscapes and test
set in CamVid. Following Accel, for each test video, we
conduct the reference branch on a selected key frame and
update branch on the annotated frame. The segmenta-
tion results are predicted via the feature propagation and
score fusion. We evaluate different methods with mean
Intersection-over-Union (mIoU) as metric. The key frame
interval is set as 5 throughout the experiments.
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For our IFR, there are three trade-off hyperparameters
in Eq. 11 and one temperature in Eq. 6, i.e., λL, λU , λs

and τre. We set λL = 0.01, λU = 0.001, λs = 0.1 and
τre = 0.5 for all experiments.

4.3. Performance Comparison

To demonstrate the superiority of our method, we make
a comparison with recent state-of-the-art methods, i.e.,
two consistency based SSIS methods including CCT [23]
and CAC [17], and one self-learning based SSIS method
CPS [4]. However, it is hard to directly compare with these
methods since they are implemented under different set-
tings, e.g., segmentation models, data splits, and training
settings. Besides, these methods are not applied to our used
video semantic segmentation model Accel. Therefore, we
reproduce these methods according to their official codes,
where all of them are equipped with the same base seg-
mentation model, i.e., PSPNet, and trained with the same
data splits and training settings (i.e., optimizer and hyper-
parameters). In addition, different data augmentations are
adopted in existing works, e.g., random cropping and flip-
ping in [23], and extra random scaling in [17] and cutmix
in [4]. For fair comparison, we adopt the same random crop-
ping and flipping for supervised learning of all comparison
methods while keeping their original implementations for
unsupervised learning. In this way, we can fairly compare
the improvement brought by different methods on the basis
of the same baseline with supervised learning.

The comparison on Cityscapes and CamVid is shown in
Table 3 and Table 4. From the results, we have the following
two observations. First, our IFR can bring significant per-
formance improvement under all partition protocols com-
paring to the baseline that only uses the labeled data. A
larger gain is achieved for the cases with less labeled data,
e.g., 7.13% mIoU gain with 100 samples in Cityscapes and
7.14% mIoU gain with 15 samples in CamVid. Such exper-
imental results well verify that IFR can effectively improve
the generalization of models. Second, our method sur-
passes other state-of-the-art methods, including CCT [23],
CAC [17], and CPS [4], by a large margin. For example,
it outperforms CPS by 3.98% and 3.46% under 1/30 par-
tition protocol on Cityscapes and CamVid, respectively. It
shows that IFR can better utilize the unlabeled video data in
training model.

4.4. Ablation Study

In this subsection, we conduct experiments to reveal
the effectiveness of our proposed method. All experi-
ments are particularly conducted with 1/30 labeled data on
Cityscapes. For efficient training, we adopt PSPNet with
ResNet18 as the segmentation network by default.

Effect of Components. To reveal the contribution of our
proposed components, we conduct an extensive study by

Lsup L̃L L̃U L̃s
L + L̃s

U mIoU (%)√
43.68√ √

46.13 (+2.45)√ √
46.81 (+3.13)√ √
46.66 (+2.98)√ √ √
47.51 (+3.83)√ √ √ √
48.40 (+4.72)

Table 5. Ablation study on our proposed components. Each
component can bring performance improvement comparing to the
baseline, and their combination performs best.

Method
Stage One

Stage Two
PSPNet18 PSPNet101

Baseline 43.68 50.24 45.73
+ CCT 45.60 (+1.92) 52.60 (+2.36) 48.05 (+2.32)
+ CAC 46.50 (+2.82) 53.50 (+3.26) 48.83 (+3.10)
+ CPS 46.81 (+3.13) 53.26 (+3.02) 48.97 (+3.24)
+ Ours 48.40 (+4.72) 54.40 (+4.16) 52.86 (+7.13)

Table 6. Ablation study on improvement in multi-stage train-
ing. Following Accel, stage one involves the training of image
segmentation model while stage two mainly involves the training
of optical flow network and score fusion. Comparing to others, our
method can bring more gains in both training stages.

evaluating their combinations, and the results are shown in
Table 5. It can be seen that each component can bring per-
formance improvement comparing to the baseline. In par-
ticular, the feature reconstruction on both the labeled and
unlabeled frames can achieve higher accuracy than the set-
ting only equipped with each of them. Finally, the combi-
nation of all components performs best.

Improvement in Two Stages. The used Accel is trained in
a two-stage manner. Here we investigate the performance
improvement in the two-stage training, and the results are
shown in Table 6. In stage one, only image segmenta-
tion models, i.e., PSPNet18 and PSPNet101, are involved.
Comparing to other methods, our method can obtain more
gain over the baseline due to better utilization of unlabeled
videos. In stage two, the training of optical flow network
and score fusion layer are involved, i.e., no semi-supervised
method is introduced in this stage. However, we observe
an interesting phenomenon that our trained segmentation
model can further bring performance improvement over the
baseline, while other models only almost maintain improve-
ment brought in stage one. It is because our method can
help the segmentation model to extract features with a sim-
ilar distribution for different frames, which is important for
the feature fusion in Accel.

Performance with Different VSS Architectures. To study
the generalization ability of our method, we further apply it
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Baseline (Accel) CCT CAC CPS Ours GTFrame

Figure 4. Qualitative results comparison on the Cityscapes dataset using 1/30 labeled samples. The proposed IFR produces better results
than the baseline and other methods. We highlight the details with the yellow boxes. Best viewed in color and zoom in.

Method Baseline + Ours

DFF [30] 44.19 49.97 (+5.78)
DAVSS [31] 46.51 51.97 (+5.46)

Table 7. Performance on different VSS architectures. Our
method can bring significant improvement for different video se-
mantic segmentation architectures consistently.

ID Accel + CAC + CPS + Ours

T

20 81.5 80.1 79.7 76.5
15 69.8↓11.7 69.9↓10.2 68.1↓11.6 71.0↓5.5
10 65.3↓16.2 65.5↓14.6 65.1↓14.6 67.4↓9.1
5 60.6↓20.9 61.9↓18.2 61.8↓17.9 66.8↓9.7

V 20 49.8↓31.7 51.1↓29.0 51.3↓28.4 53.9↓22.6

Table 8. Performance on Cityscapes-VPS. T and V represent
training and validation subsets, respectively. ID represents for
frame id. Model is trained on the 20th frame in training subset.
↓ represents the accuracy gap comparing to trained frames. Ob-
viously, our method can significantly reduce both overfitting and
inner-video overfitting issues.

to different video semantic segmentation architectures. We
particularly adopt two widely adopted video segmentation
architectures, i.e., DFF [30] and DAVSS [31]. As shown in
Table 7, our proposed method can bring significant perfor-
mance improvement consistently.

Effectiveness on Alleviating Overfitting. To verify the
effectiveness of our method on tackling the overfitting,
we conduct an analysis experiment on Cityscapes-VPS, in
which each video is annotated with multiple frames, and the
results are shown in Table 8. Comparing to the baseline, it
can be seen that our method can significantly reduce the ac-
curacy gap not only between training and validation videos
but also within training videos. It verifies that our method
can effectively alleviate the overfitting issue in video se-
mantic segmentation.

Effectiveness on Temporal Consistency. It is important

Method Accel + CCT + CAC + CPS + Ours

TC 70.04 71.43 71.47 70.74 73.88

Table 9. Comparison on Temporal Consistency. We evaluate
different methods with temporal consistency (TC) score [18]. Our
proposed method can bring a significantly improvement.

for VSS methods to produce temporally stable predictions.
Thus, we further verify the effectiveness of our method
on improving temporal consistency. Particularly, we fol-
low [18] and adopt temporal consistency (TC) score as the
evaluation metric. As shown in Table. 9, our method can
bring a significant improvement, since consistent predic-
tions among different frames can be achieved.
Qualitative Results. Figure 4 presents the visual compar-
ison with the baseline and other semi-supervised methods.
We can observe that the results of our method are commonly
superior to others.

5. Conclusion
In this paper, we focus on the semi-supervised video se-

mantic segmentation problem, and propose a novel inter-
frame feature reconstruction approach. Our IFR exploits
a large number of unlabeled frames by cooperating them
into supervised learning of labeled frames, which essen-
tially narrows the feature distribution of different frames
within a video. Furthermore, we propose two extensions
on strong augmented data and unlabeled videos. IFR can
effectively alleviate the inner-video overfitting, and exten-
sive experiments on Cityscapes and CamVid validate the
effectiveness of our method, which outperforms previous
state-of-the-art methods.
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