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Abstract—The deep reinforcement learning-based multi-UAV
collision avoidance and navigation methods have made significant
progress. However, the fundamental challenges of those methods
is their limited ability to generalize beyond the specific domains
they are trained on. We find that the cause of the generalization
failures is attributed to spurious correlation. To address this
issue, we propose a causal representation learning method to
identify the causal representations from images. Specifically, our
method can ignore factors of variation that are irrelevant to the
deep reinforcement learning task through causal intervention.
Subsequently, the causal representations are fed into the policy
network for action prediction. Experimental results show that our
method exhibits better generalization performance compared to
state-of-the-art method in different testing scenarios.

Index Terms—Causal Representation Learning, Deep Rein-
forcement Learning, Multi-UAV Systems, Collision Avoidance
and Navigation.

I. INTRODUCTION

With the development of artificial intelligence and robotics,
unmanned aerial vehicle systems (UAVs) [1]–[4] technology
has been widely applied, such as aerial photography [5],
[6], pesticide spraying [7], [8], search and rescue [9], [10].
Collision avoidance and navigation capability are crucial to
ensure UAVs operate safely and effectively. The UAVs must
have the ability to avoid obstacles in complex environments
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Fig. 1. Illustration on the influence of spurious correlations. Due to the
presence of spurious correlations, deep reinforcement learning algorithms have
a tendency to memorize solutions of seen obstacles in the training scenario,
thereby achieving high training rewards with a brittle policy that will not
generalize to unseen obstacles in the testing scenario.

while identifying the optimal path from a starting point to a
target point.

There has been a significant amount of research and related
works on UAVs collision avoidance and navigation. The
traditional approaches [11]–[13]for UAVs collision avoidance
and navigation are based on simultaneous localization and
mapping (SLAM) [14]. These approaches construct a local
environment map based on SLAM for path planning to achieve
collision avoidance and navigation. Another method is the path
retracing [15], [16] which enables the UAVs to autonomously
navigate along previously demonstrated or pre-planned paths.



However, this method has limited adaptability. A common
characteristic of these traditional methods is their reliance on
prior maps of the environment and manually designed features.
These methods have gradually become inadequate for practical
navigation tasks in terms of robustness, generalization, and
adaptability.

To explore more adaptable solutions in the field of machine
learning, deep reinforcement learning (DRL) [17]–[19] have
received significant attention. DRL can learn and optimize
strategies adaptively in complex and dynamic environments
without the need for manual parameter tuning and rule ad-
justment. Specifically, DRL extracts low-dimensional state
representations from raw observational data. Then the DRL
model selects the optimal action based on the current state
representation and updates the policy or value function based
on the rewards or penalties received from the environment.
This process aims to maximize long-term rewards, ultimately
deriving the optimal strategy to accomplish the desired task.

However, one of the fundamental challenges with DRL
approaches is their limited ability to generalize beyond the
specific domains they are trained on. Consider the example
shown in Fig. 1. The UAVs are trained in a playground
environment with only UAV-like obstacles and must learn
to navigate to a goal located from a start located. In the
testing scenario, we introduce several unseen obstacles. The
policy trained using DRL techniques demonstrates strong
performance when deployed in training scenario with UAV-like
obstacles. However, its performance significantly degrades in
testing scenario with unseen obstacles. This example illustrates
the difficulty of existing deep reinforcement learning methods
to generalize to scenarios with unseen obstacles.

To reveal the reasons for the generalization failures in
reinforcement learning, we review pioneering work in the
field of multi-UAV collision avoidance based on deep rein-
forcement learning, i.e.,SAC+RAE) [20]. We find that the
cause of the generalization failures is attributed to spurious
correlations [21], [22]. Specifically, DRL algorithms have a
tendency to memorize solutions of seen obstacles during the
training phase, thereby achieving high training rewards with
a brittle policy that will not generalize to unseen obstacles.
Moreover, learned policies often fail to ignore non-causal
factors (e.g.,the obstacle shape) in their sensor observations
and are highly sensitive to changes in such non-causal factors.

Recent studies also show that the generalization of DRL
policies can be improved substantially by causal representation
learning. Causal representation learning [23]–[25] aims to
find the high level causal variables from low-level observa-
tions. It can effectively extract causal factors that impact the
task, reducing the influence of spurious correlations on the
generalization ability of DRL. In this paper, we propose a
Causal Representation Learning (CRL) method to identify
the causal representations from images. Specially, we only
intervene the shape of obstacles within deep images, keeping
the rest content of the image unchanged. Then the images
of spherical obstacles and cubic obstacle are used solely as
auxiliary task for causal representation learning. Through its

auxiliary task, CRL learns to generalize by maximizing the
mutual information between latent representations of different
obstacles images. In addition, we apply supervision signals
to the latent representations to reduce redundancy between
dimensions. Intuitively, this encourages different dimensions to
capture distinct information. After that, CRL learns to ignore
factors of variation that are irrelevant to the DRL task, which
greatly enhance generalization ability of DRL model.

To evaluate the generalization ability of CRL, we conduct
several testing scenarios across different obstacles. In compar-
ison with previous state-of-the-art (SOTA) methods, the results
demonstrate that CRL outperforms the SOTA across different
testing scenarios and prove the effectiveness of our method.

II. RELATED WORK

A. DRL-based Collision Avoidance Navigation

The multi-UAV collision avoidance navigation based on
DRL is a process of training UAVs to navigate to a goal located
from a start located without collision through an environment
with actions and corresponding rewards. Pham et al. [26]
discretize the UAV’s flight plane into a series of grids and
then use deep q-network (DQN) [27] to decide the actions
that the UAV should take at a given position. However, they
only consider the problem of flying in an environment without
obstacles and do not include high-dimensional inputs such as
images. Walvekar et al. [28] use DQN to address the collision
avoidance problem for UAV in a 3D environment. The authors
use first-person view images from the UAV as input to the
DQN network, but they do not explicitly provide navigation
goals, so their approach cannot solve navigation problems
with random targets. To address the issue of random target
navigation, Kersandt et al. [29] concatenate the goals and
observation and input these into the DQN algorithm. This
method maps the information to left turn, right turn, and
forward movement actions, enabling the UAV to reach the
random target points. However, the above methods are unable
to capture causal representations in visual observation, making
it difficult to generalize to unseen obstacles scenarios.

B. Causal Representation Learning

Our work builds on the nascent field of causal representation
learning. Causal representation learning [23]–[25] is a method
to model the causal relationships within the data. It can reduce
the effect of spurious correlations and transform the data
into a structured representation that aligns with physical laws.
Yang et al. [30] propose a method called CausalVAE, which
is the first to introduce structural causal models into repre-
sentation learning. This approach considers the relationships
between generative factors in the data from a causal perspec-
tive. To address the problem of learning causal representation
from multiple distributions, Zhang et al. [31] propose applying
sparsity constraints to the latent variable graph structure. This
method can recover the latent causal variables and their rela-
tionships. To address the sparsity of supervisory signals and
the long-tail problem in causal representation learning, Zhao et
al. [32] propose a causal representation decoupling learning
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Fig. 2. The illustration of causal representation learning method. To extract invariant causal representation, we intervene the shape of obstacles and
maximize the mutual information through the Linvariance. In addition, we introduce the Ldecorrelation to ensure that different dimensions capture different
information.

based on contrastive learning. This method can effectively
improve the accuracy and robustness of model prediction. In
this paper, we conduct causal intervention on the shape of ob-
stacles to extract invariant causal representations. This method
can effectively reduce the influence of spurious correlations on
the generalization ability of DRL.

III. APPROACH

A. Problem Formulation

DRL [17]–[19] is a method that studies how an intelligent
agent interacts with environment to achieve the maximum
reward. The agent formulates the strategy based on the current
state of the environment, and this iterative process exhibits
Markov properties. Therefore, DRL can be modeled as a
Markov decision process. The POMDP can be described as a
5-tuple (S,A,P,R, γ), where S is the set of agent state spaces
and A denotes the set of agent action spaces. P denotes the
conditional probability of state transitions P a

ss′ = P [St+1 =
S′ | St = s,At = a]. γ is called the discount factor, used
to describe the discounting of reward values over time. The
ultimate goal of this process is to establish a policy that maps
the state space to the optimal control actions.

1) Observation space: The observation space of the UAV
can be defined as O = [I, V,G], where I denotes the
accumulation of three consecutive depth images. V denotes
the speed of the UAVs at the current moment. G denotes the
euclidean distance between the UAV’s current position and the
target position.

2) Action space: To maintain the continuity of the UAV’s
movement, we designed the UAV’s continuous action space
A = [vx, vy, vz]. vx represents the UAV’s forward velocity. vy
denotes the turning velocity of the UAVs. And vz denotes the
climbing velocity of the UAVs.

3) Reward function: The purpose of collision avoidance
navigation is to control the UAVs to reach the target position
in a complex environment without collision. This process can
be divided into two subtasks: target approach rg and obstacle
avoidance rc. Therefore, when the UAVs safely reaches the

target positions, it should be given positive feedback as a
reward. Conversely, when a collision occurs, negative feedback
should be given as a punishment.

r = rg + rc (1)

rg =

{
rarrival if dt < 0.5
αgoal · (dt − dt−1) otherwise

(2)

where dt is the distance between the UAV’ position and the
target positions at time t. rarrival is the reward for UAVs that
have reached the target positions. And αgoal is the reward
weight.

rc =

{
rcollision if crash
αavoid ·max(dsafe − dmin, 0) otherwise

(3)

where rcollision is the collision penalty. αavoid is the penalty
weight. And dsafe is the safe distance of UAVs.

B. Architectural Overview

Our approach builds upon the previous work [20]. As
shown in Figure 2, our framework consists of two parts:
representation learning and policy learning. We construct a
causal representation learning structure based auto-encode. It
aims to learn representations that effectively reduce the infor-
mation of obstacle shape. Subsequently, based on those causal
representations along with the current velocity and the target
position are fed into policy network for strategy learning.
According to the current environment, SAC algorithm [33]
returns a set of actions for UAV control, including velocity on
three dimensions.

In the policy improvement step, we update the actor network
by maximizing the loss function J(π), which can be expressed
as follows:

J(π) = Eo∼B [DKL(π(·|o)∥Q(o, ·))] (4)

We update the critic network by minimizing the loss function
J(Q), which can be expressed as follows:

J(Q) = E(o,a,r,o′ )∼B

[
(Q(o, a)− r − γV̄ (o

′
))2

]
(5)
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Fig. 3. Simulation scenarios for evaluating the generalization ability. We set up four different shapes of obstacles during the testing phase to evaluate the
effectiveness of our method. All obstacles are set to the same size.

We adopt the loss function L(rec) to reconstruction image
through updating the encoder [34] and decoder [35] with the
following objective:

L(rec) = Ex

[
log pϕ(x|z) + λz∥z∥2 + λϕ∥ϕ∥2

]
(6)

C. Extract Invariant Causal Representation

The key idea of this section is to learn causal representations
from images that makes the optimal policy built on top of this
representations invariant across training domains. Effectively,
this approach attempts to learn and exploit the causes of
successful actions. Some works [36], [37] has demonstrated
that we need to discover invariant mechanisms from multiple
source domain data and identify hidden causal variables.
Therefore, in this work, we conduct causal intervention [38],
[39] on the shape of obstacles to construct multiple source
domain data with different obstacles. Specifically, we use
Airsim’s image rendering technology [40], [41] to change the
shape of the obstacles while keeping other content unchanged.
As shown in Fig. 2, we adopt a auto-encoder (AE) [42]–[44]
for representation disentanglement. We use a depth camera to
sample different observationsO1, O2 from the environment.
O1 denotes the images containing the UAVs and spherical
obstacles. O2 denotes the images containing both the UAVs
and cubic obstacles. We feed them into the encoder to extract
representations h1, h2 respectively. Then we apply an instance-
dimensional normalization to ensure each feature dimension
has a 0-mean and 1√

N
-standard deviation distribution, which

is implemented as:

z =
hi − µ(hi)

σ(hi) ∗
√
N

(7)

The obtained normalized z1, z2 are further used to maximize
the mutual information through the invariance term:

Linvariance = ||z1 − z2||2 (8)

Intuitively, the invariance term is used to minimize the differ-
ence between two normalized representations.

Furthermore, previous work [45] has shown that multiple
dimensions in representations share overlapping information.
To ensure that different dimensions capture different informa-
tion, we introduce the following decorrelation term:

Ldecorrelation = F(z1, z
T
1 , I) + F(z2, z

T
2 , I) (9)

where F(·, ·) = ∥ · − · ∥2F , ∥ · ∥
2
F denotes the Frobenius norm

and I is an identity matrix. The decorrelation term can avoid
the collapsed trivial solution outputting the same vector for
all inputs by trying to equate the off-diagonal elements of the
auto-correlation matrix of each representation to 0.

IV. EXPERIMENT AND RESULTS

A. Simulation Environment and Experiments Setup

Airsim [41], [46] is a high-fidelity software used for UAV
simulation testing. Therefore, we choose Airsim as the basis
for our simulation system to conduct research on UAV obstacle
avoidance algorithms. The simulation scenario experiments
are conducted on a simulation computer with the following
software configuration: Ubuntu 20.04 operating system, Intel
i9-12900k CPU, and a single NVIDIA RTX 3090 GPU.

B. Performance Metrics and Experiment Scenarios

To evaluate the effectiveness of our method, we define the
following metrics:

• Success Rate: The percentage of UAVs that successfully
reach their target within a limited time without any
collisions.

• SPL (Success weighted by Path Length): This metric
considers not only the success rate of the task but also
the efficiency of the path.

• Extra Distance: The extra distance traveled by the UAVs
to reach the target point compared to the straight-line
distance between the initial and target positions.

• Average Speed: The average speed of all UAVs.
As shown in Fig. 3, to better illustrate the effectiveness of

our proposed method in improving the generalization ability,
we evaluate the CRL on the challenging shape of obstacle,such
as: cube, sphere, triangle and cylinder. We have fixed the
size of the simulation area by 16*16*4 and consider 8 UAVs
besides four static obstacles. The initial and target positions
of the UAVs and obstacles are randomly generated within this
area.

C. Performance Comparison

We compare our method with the SOTA method,
i.e.,SAC+RAE, under different obstacles scenarios. As shown
in TABLE I, our method have a higher success rate and
SPL compared to SAC+RAE, which clearly shows that the



TABLE I
PERFORMANCE (AS MEAN/STD) COMPARISON UNDER DIFFERENT BACKGROUNDS.

Obstacle shape Seen/Unseen Method Success Rate (%) SPL (%) Extra Distance (m) Average Speed (m/s)

Cube seen
SAC+RAE 67.6 58.3 1.483/1.436 0.771/0.158
Our method 74.4 (↑ 6.8) 62.5 (↑ 4.2) 1.542/1.519 0.806/0.125

Sphere seen
SAC+RAE 68.3 58.4 1.680/1.709 0.783/0.160
Our method 73.4 (↑ 5.1) 62.2 (↑ 3.8) 1.735/1.718 0.814/0.132

Triangle Unseen
SAC+RAE 72.5 62.1 1.535/1.622 0.775/0.164
Our method 76.3 (↑ 3.8) 64.4 (↑ 2.3) 1.815/1.802 0.809/0.135

Cylinder Unseen
SAC+RAE 67.6 58.6 1.646/1.621 0.783/0.155
Our method 72.1 (↑ 4.5) 61.7 (↑ 3.1) 1.853/1.810 0.810/0.138

SAC+RAE Our Method

Fig. 4. Visualization of UAV trajectories in perspective drawing and three-view drawing. We use different colors to represent trajectories of different
UAVs.

proposed causal representation learning method can effectively
improve the generalization ability of DRL model for unseen
obstacles. At the same time, our method demonstrates a faster
average speed, which reduce the time to reach the target point.
However, our method have a longer extra distance compared
to SAC+RAE. It indicates that each UAV need to adjusts its
planned path more frequently to avoid collisions.

D. Visualization

To more intuitively demonstrate the collision avoidance
performance of our method, we provide the visualization
of UAVs trajectories in perspective drawing and three-view
drawing. As shown in Fig. 4, our method demonstrates better
path planning and collision avoidance performance compared
to SAC+RAE.

V. CONCLUSIONS

In this paper, we propose a causal representation learning
method to identify the causal variables from images to improve
the generalization ability of DRL model. we intervene the
shape of obstacles and maximize the mutual information
through the invariance term. In addition, we introduce the

decorrelation term to ensure that different dimensions cap-
ture different information. Experimental results show that our
method exhibits better generalization performance compared
to state-of-the-art method in different testing scenarios.
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