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Abstract: UAV target distance estimation plays a crucial role in enabling the emergence of 

collective intelligence for swarm UAVs. The basis for estimating the distance of a UAV target lies 

in object detection. Although object detection models learn essential information for distance 

estimation, most research tends to overlook the relationship between object detection and distance 

estimation. In light of this observation, we propose a novel approach that utilizes self-view attention 

and cross-view attention mechanisms to enhance object detection perception for accurate distance 

estimation. To learn the relationship between object detection and distance estimation, we stack the 

attention mechanism and distance estimation model, training them in an end-to-end manner. We 

conduct experiments on the UAVDE dataset and demonstrate that our method achieves a significant 

improvement over the state-of-the-art method PCM (reducing the relative difference from 12.0% to 

10.1%. This highlights the effectiveness and superiority of our proposed approach. 
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0  Introduction 

 Due to shared perception and intelligence navigation, swarm UAVs have a unique advantage in 

many applications, such as rescue [1], 3d reconstruction [2], and environment exploration [3]. With the 

development of swarm UAVs, collective intelligence has emerged as a powerful concept, showcasing 

remarkable flexibility and exploration capabilities. Accurately detecting targets and estimating distances 

are vital components of collective intelligence, as they provide crucial information to support 

perception and navigation processes Accurate UAV target detection and distance estimation remain 

challenging in practice due to several factors. One of the main obstacles is the scarcity of datasets that 

contain both stereo images and corresponding distances. Most stereo-based distance estimation methods 
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rely on dense disparity maps as labels, which are typically annotated using Lidar. However, Lidar is not 

suitable for UAV targets, making it difficult to obtain reliable distance annotations [4]. Furthermore, 

UAVs have limited resources, such as power, computational compatibility, and physical size, which 

constrain the implementation of complex algorithms. To address the lack of suitable datasets, Zhuang et 

al. [5] introduced the UAV Distance Estimation (UAVDE) dataset, which utilizes Ultra-Wideband (UWB) 

technology to acquire distance annotations. This dataset provides a valuable resource for researchers 

working on UAV target detection and distance estimation. In addition to the dataset, Zhuang et al. also 

proposed a Positional Correction Module (PCM) to achieve accurate and real-time distance estimation. 

The PCM aims to overcome the limitations imposed by UAV hardware constraints and enable efficient 

distance estimation. However, the PCM directly takes the detector’s bounding box as input, failing to 

establish a relationship between object detection and distance estimation. This limitation highlights the 

need for further research to develop methods that effectively bridge the gap between these two critical 

tasks in UAV perception. In an object detection pipeline, the initial step involves passing images 

through a backbone network to generate general features. These features are then fed into different 

heads, each responsible for predicting classification and bounding box regression results. Since these 

results often contain redundancies, non maximum suppression (NMS) is employed to filter out 

redundant boxes. While NMS effectively works for single object detection tasks, our research findings, 

as depicted in Table 1, indicate that it may not be the optimal choice for distance estimation in the 

context of UAV targets.  

Table1 Analyis study on Bounding Boxes 

Model Val Test 

 Abs Rel Sq Rel Abs Rel Sq Rel 

baseline 0.490 6.716 0.494 6.818 

Baseline* 0.448 5.950 0.462 6.220 

+PCM 0.148 1.014 0.121 0.620 

+PCM* 0.066 0.425 0.058 0.286 

Researchers have explored various approaches to improve NMS for object detection task only. 

These include Greedy-NMS [6] with a fixed threshold that selects the highest-scoring ROI, Soft-NMS [7] 

and Weighted-NMS [8] that suppress neighboring regions, and AdaptiveNMS [9], which is a dynamic 



threshold version of Greedy-NMS. Additionally, DNN based NMS networks have demonstrated 

superior performance. For example, GossipNet [10] rescores ROIs using their coordinates and scores, 

Cluster-NMS [11] incorporates geometric information, and Seq2Seq-NMS [12] handles both visual 

appearance and geometric information of ROIs. The effectiveness of DNN-based NMS networks has 

been well-established in the literature. Drawing inspiration from these works, we propose a novel 

approach that leverages feature alignment to utilize the features learned by the detector. Furthermore, 

we introduce a self-view attention network to capture the relationship between redundant bounding 

boxes and a cross-view attention network to exploit stereo information. Our method learns to assign 

appropriate weights to fuse the original bounding boxes, effectively refining the detection results. To 

achieve accurate distance estimation, we integrate our proposed method with the PCM and train them in 

an end-to-end manner. This approach enables the learning of optimal bounding boxes tailored 

specifically for the PCM, thereby enhancing the overall performance of UAV target distance estimation. 

By establishing a strong connection between object detection and distance estimation through the use of 

attention mechanisms and feature alignment, our method addresses the limitations of existing 

approaches and contributes to the advancement of UAV perception. 

1  Methods 

In this research, our primary objective is to establish a collaborative relationship between an object 

detector and a stereo distance estimation model. The aim is to enhance the object detector’s ability to 

generate paired matching points that are better suited for accurate stereo distance estimation. To this 

aim, our methodology comprises several key steps. Firstly, we extract features from the object detector, 

enabling us to obtain valuable perception information. Subsequently, we introduce two attention 

mechanisms: a self-view attention mechanism that facilitates the establishment of relationships between 

different features within a single object, and a multi-view attention mechanism that fosters relationships 

between stereo images. These attention mechanisms play a critical role in enhancing the object 

detector’s capability to generate matching points suitable for accurate stereo distance estimation. 

Furthermore, we adopt a comprehensive end-to-end training approach by training the attention modules 

in conjunction with the distance estimator. This integrated training procedure ensures optimal 

performance and coherence between the attention mechanisms and the distance estimator 

In the subsequent sections, we will provide detailed explanations of each component, elaborating 



on their individual roles and contributions within the proposed framework. 

 

Fig. 1  Entire Pipeline. 

1.1 Entire Pipeline 

1.1.1 Positional Correction Module 

 The Positional Correction Module (PCM) is designed to address the position deviation issue in 

UAV scenarios. This lightweight method can operate on UAV devices in real-time. By taking stereo 

bounding boxes as inputs, the PCM predicts offsets to compensate for the stereo matching points, 

enabling accurate distance prediction through triangulation. The PCM is well suited as the distance 

estimator for our research, as our approach generates reliable bounding boxes that can be used as inputs 

for the PCM. 

1.1.2Positional Correction Module 

 Initially, we considered training the object detector and distance estimator jointly. However, this 

approach would require an additional distance label, which is not necessary for the object detector. To 

improve the system’s generality and practicality, we adopted a different strategy: directly extracting 

features from a pretrained detector. 

 As illustrated in Figure. 1, our proposed method takes alignment features as input and fuses them 

with the original detector bounding box to make it suitable for the distance estimator. The parameters of 

both the proposed method and the PCM are updated using the Mean Squared Error (MSE) Loss during 

backpropagation. This approach allows for the effective integration of the object detector and distance 

estimator, while leveraging the pretrained detector’s features to enhance the system’s performance and 

adaptability. 



 

Fig. 2  Illustration of Perception Feature Alignment 

1.2 Perception Feature Alignment 

 Specifically, we select the top 10 boxes for each stereo image, resulting in 10×10 paired points. We 

compute the distance based on these paired points and observe that the box obtained after applying 

NMS does not yield the most accurate distance estimation. In contrast to the redundancy-filtering nature 

of NMS, the features associated with generating these bounding boxes retain distinct information. We 

refer to the process of extracting features that produce specific box perception as perception feature 

alignment. The YOLOX architecture comprises three essential components: CSPDarknet serves as the 

backbone for feature extraction, PAFPN [13] functions as the neck to preprocess the feature and generate 

three distinct levels of receptive field, and the head is responsible for predicting bounding boxes. Our 

objective is to align a specific feature computed by PAFPN with its corresponding bounding box. 

Figure 2 illustrates how a single bounding box corresponds to three different levels of the PAFPN 

feature, considering the bounding box k marked as red color. The corresponding features to this 

bounding box are also marked as red dots. Once the features are located, we concatenate them into a 

single vector. We select the top 10 bounding boxes from both the left and right images, resulting in the 

alignment of 10 features for both the left and right objects. These features serve as inputs for our 

proposed attention mechanism. 

1.3 Attention Mechanism 

 The attention mechanism we utilize is specifically designed to capture relationships between 

sequences. In contrast to NMS, which filters out redundant boxes, we employ our attention mechanism 

to re-learn the confidence scores of the bounding boxes. These re-learned scores serve as weights for 



their corresponding bounding boxes and are then summed to generate a fused bounding box. As shown 

in Figure 2, we employed self-view attention to learn the representation within each image’s features. 

Once both the left and right features have acquired an intermediate representation, the left intermediate 

features serve as the queries for the right features. This enables cross-view attention to learn additional 

representations for re-scoring the right bounding boxes. The right intermediate features undergo a 

similar process to rescore the left bounding boxes. 

2  Exprimental Setting and Result 

2.1 UAVDE Dataset 

To verify the effectiveness of our proposed method, we utilized the UAV Distance 

Estimation(UAVDE) dataset [14]. The UAVDE dataset is created for UAV target distance estimation and 

consists of 3895 stereo images. For the data annotation, the UAVDE dataset applied Ultra Wide 

Band(UWB) sensors for distance annotation and also manually annotated the UAV bounding boxes on 

stereo images. The method we propose requires both object bounding box and distance as labels, so the 

UAVDE dataset is suitable for our research. Specifically, the UAVDE dataset is divided into training, 

validation, and evaluation datasets, which contain 2815, 541, and 539 stereo images with a resolution of 

1280*720 respectively. 

 

2.2 Implementation Details 

We adopt YOLOX-Nano as our UAV object detector, following previous work and considering its 

balance between performance and computational cost, as well as to ensure a fair comparison. We first 

pre-train the detector on the UAVDE dataset[14], following the same settings as PCM. Our attention 

mechanism is jointly connected with PCM, enabling end-to-end training and inference. For the training 

process, we use a batch size of 128 and employ the SGD optimizer with a learning rate of 1e-3, a 

momentum of 0.9, and a weight decay of 1e-3. We apply gradient clipping with a 1.0 clipping threshold 

and L2 norm to stabilize the training process. Additionally, we follow the original training protocol, 

adopting a cosine learning rate schedule with a linear warmup for the first 150 epochs, and train the 

model for a total of 1500 epochs. For the attention module, we set the inner linear projection dimension 

to 896, the number of heads to 4, and the dropout to 0.1. Besides, we also incorporate positional 

encoding to capture spatial information. All experiments are conducted on a single NVIDIA RTX 4090 



GPU, enabling efficient training and inference of our model. 

 

2.3 Result and Analysis 

 We evaluated our method using the Absolute Relative Difference (Abs Rel) and Square Relative 

Difference (Sq Rel) metrics, consistent with previous studies. To demonstrate the superiority of our 

approach, we compared it to the state-of-the-art PCM method. Table 2 presents the results, with the 

baseline being stereo triangulation on UAV detection outcomes. The following observations can be 

made from these findings: First, the PCM method significantly outperforms the baseline, with an 

improvement of over 37%, effectively mitigating the issue of position deviation. Second, by 

incorporating our attention module to generate more accurate bounding boxes for PCM, we achieved a 

further improvement of 2.1%. This result provides additional evidence supporting the effectiveness and 

superiority of our proposed approach. 

 Table1 Reuslts of proposed methods 

Model Val Test 

 Abs Rel Sq Rel Abs Rel Sq Rel 

baseline 0.490 6.716 0.494 6.818 

+PCM 0.148 1.014 0.121 0.620 

+PCM + Att 0.116 0.547 0.101 0.309 

  

                                           (1) 

                                           (2) 

 

3  Conclusion 

In this paper, we addressed the importance of UAV target distance estimation in enabling 

collective intelligence for swarm UAVs. We proposed a novel approach that leverages self-view and 

cross-view attention mechanisms to enhance object detection perception, resulting in more accurate 



distance estimation. By stacking the attention mechanism and distance estimation model and training 

them end-to-end, our method effectively learns the relationship between object detection and distance 

estimation. Experimental results on the UAVDE dataset demonstrate the superiority of our approach, 

reducing the relative difference from 12.0% to 10.1% compared to the state-of-the-art PCM method. 

This significant improvement highlights the effectiveness of our proposed approach in advancing drone 

perception and bringing us closer to realizing the full potential of collective intelligence in swarm 

UAVs. Future research could explore the application of our approach to real-world scenarios and 

investigate its scalability and robustness in large-scale swarm UAV systems. Our novel approach 

contributes to the advancement of UAV target distance estimation and paves the way for the realization 

of collective intelligence in swarm UAVs. 
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