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Abstract

Due to high expense of human labor, one major chal-
lenge for semantic segmentation in real-world scenarios is
the lack of sufficient pixel-level labels, which is more serious
when processing video data. To exploit unlabeled data for
model training, semi-supervised learning methods attempt
to construct pseudo labels or various auxiliary constraints
as supervision signals. However, most of them just process
video data as a set of independent images in a per-frame
manner. The rich temporal relationships are ignored, which
can serve as valuable clues for representation learning. Be-
sides, this per-frame recognition paradigm is quite differ-
ent from that of humans. Actually, benefited from the inter-
nal temporal relevance of video data, human would wisely
use the distinguished semantic concepts in historical frames
to aid the recognition of the current frame. Motivated by
this observation, we propose a novel temporally-dependent
classifier (TDC) to mimic the human-like recognition pro-
cedure. Comparing to the conventional classifier, TDC can
guide the model to learn a group of temporally-consistent
semantic concepts across frames, which essentially pro-
vides an implicit and effective constraint. We conduct ex-
tensive experiments on Cityscapes and CamVid, and the re-
sults demonstrate the superiority of our proposed method to
previous state-of-the-art methods. The code is available at
https://github.com/jfzhuang/TDC.

1. Introduction
As a fundamental tool, semantic segmentation has prof-
ited many downstream applications, and deep learning fur-
ther boosts this area with remarkable progress. However,
training a promising segmentation network relies on suffi-
cient finely annotated data. And pixel-wise labeling is time-
consuming, e.g., the annotation process costs more than 1.5
hours on average for a single image in Cityscapes [6].

In real-world scenarios, we can usually collect unlabeled
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Figure 1. Comparison between previous methods and ours.
To exploit unlabeled frames, SSIS methods attempted to construct
different supervision signals. IFR [42] proposed to optimize fea-
ture extractor by inter-frame feature reconstruction. Differently,
in this work, we propose to improve the recognition procedure by
designing a temporal-dependent classifier.

data conveniently and economically, especially video data.
Therefore, to alleviate the label-hungry problem, a grow-
ing attention is drown on semi-supervised learning to take
advantage of unlabeled data to aid model training. Be-
sides regular supervised learning on limited labeled images,
semi-supervised image segmentation (SSIS) methods pro-
posed to construct extra supervision signals for unlabeled
images, e.g., consistency constraint [21, 28] and pseudo la-
bel [4, 43]. It is shown that they can bring considerable
performance improvement on the challenging datasets, e.g.,
PASCAL VOC [10] and Cityscapes [6].

However, when unlabeled data is scaled up by adding
video data, SSIS methods can not obtain further improve-
ment [42]. The primary reason is the homogenization of
video data, i.e., the contents of different frames within a



video are often similar, which contributes less information
increment. Since SSIS methods are designed for image data
and do not consider for video characteristics, they just re-
gard videos as a set of independent images and thus fail to
exploit unlabeled video data. To tackle this issue, as the
first semi-supervised video segmentation (SSVS) method,
IFR [42] proposed to optimize the feature extractor by inter-
frame feature reconstruction. Specifically, by reconstruct-
ing the representation on labeled frame by features from
other frames, the single label can indirectly provide accu-
rate supervision for unlabeled frames within the same video.
IFR essentially utilizes the content-relevance characteristic
of video data and achieve a promising improvement.

In general, existing methods focus on designing supervi-
sion signals for unlabeled data and improving feature ex-
traction, as shown in Figure 1. However, another criti-
cal component is ignored, i.e., the classifier. Since video
segmentation is derived from image segmentation, the fi-
nal recognition process is naturally inherited in a per-frame
manner. Specifically, after extracting the feature sequence
for a video, the classifier is independently adopted on the
features of each frame for recognition. However, we found
that per-frame classification is quite different from human’s
recognition procedure, as shown in Figure 2. Specifically,
when receiving a video stream, the recognition of the first
frame is identical to image recognition. Since no prior in-
formation can be used, human would retrieve the global se-
mantic concepts for classification, which is obtained from
past learning experiences. After that, the situation be-
comes different. The distinguished objects and semantic
concepts of historical frames are not immediately forgot-
ten, but stored in the memory as context semantic concepts
in a short period of time. Therefore, when recognizing
the current frame, human would wisely retrieve both global
concepts and updated context concepts. This is fundamen-
tally different from per-frame classification. Actually, this
temporally-dependent recognition procedure essentially uti-
lizes the content relevance characteristic of video data.

Inspired by human’s manner, we propose to design a
novel temporal-dependent classifier (TDC), which is more
suitable for video perception. Specifically, TDC contains
two types of prototypes, i.e., global and context prototypes.
The former learns global semantic concepts during model
training and fixed during inference, which is identical to the
conventional classifier. Differently, the context prototypes
are calculated on-the-fly based on the last processed frame.
When recognizing the current frame, two types of proto-
types are collaborated together to calculate similarity with
the extracted feature. In this way, the distinguished context
concepts from historical frames can assist the classification.

From experimental results, we surprisingly found that
TDC can achieve significant performance improvement by
equipping a simple pseudo label supervision [11] in semi-
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Figure 2. Illustration of human-like recognition procedure.
When recognizing image data, human would retrieve the global
semantic concepts for classification, which is obtained from past
learning experiences. When recognizing the current frame of
video data, besides global concepts, human would also retrieve
distinguished objects from historical frames as temporal contexts.

supervised video segmentation task. The primary cause is
that the temporal-dependent recognition paradigm implic-
itly imposes a temporal consistency constraint. Specifi-
cally, TDC actually requires the context prototypes calcu-
lated from historical frames to accurately represent the con-
tent of the current frame. In this way, the feature extractor
would be guided to learn a group of temporally-consistent
semantic concepts across frames, which indirectly intro-
duces the content-relevance prior into the feature extraction
procedure. This guidance effectively optimizes model train-
ing on unlabeled data and improve generalization ability.

We experimentally evaluate the proposed method on the
Cityscapes and CamVid datasets. The results validate the
effectiveness of TDC, and it can bring a significant improve-
ment for mainstream video semantic segmentation methods.
The contributions of this work are summarized as follows.
• We find that the commonly adopted per-frame classifica-

tion paradigm is quite different from human’s manner and
sub-optimal for video perception task, which is ignored in
previous studies.



• We propose a novel temporal-dependent classifier (TDC)
for semi-supervised video segmentation, which can im-
plicitly impose a temporal consistency constraint for un-
supervised learning. TDC essentially utilizes the internal
relevance of different frames within a video.

• We experimentally evaluate the effectiveness of our
proposed methods, and the results on Cityscapes and
CamVid demonstrate the superiority of our method to pre-
vious state-of-the-art methods.

2. Related Work
2.1. Image Semantic Segmentation

Image semantic segmentation aims to assign a class la-
bel to evey pixel in an image, which is a fundamental
yet rather challenging task. Modern deep learning meth-
ods for semantic segmentation are mainly based on fully
convolutional network (FCN) [25]. To further enhance
segmentation results, the dilation convolution [2], pyra-
mid pooling [37], attention mechanism [12, 17, 38], gat-
ing mechanism [7, 13, 22], and high-resolution architecture
design [34] are proposed to model object relationships and
aggregate context information. Recently, some transformer-
based models [5, 24, 35] are proposed and exhibit promis-
ing performance. Despite the success of these models, they
are often impeded in practical deployment due to requiring
sufficient pixel-wise annotations for learning.

2.2. Video Semantic Segmentation

Video semantic segmentation aims to predict pixel-level se-
mantics for each video frame. Different from static images,
videos embody rich temporal information that can be ex-
ploited to improve segmentation performance. DFF [39]
firstly proposes feature propagation to reuse key frame fea-
tures under the guidance of estimated optical flows, which
reduces the average computational cost. Inspired by DFF,
Accel [19] proposes an adaptive fusion policy to effec-
tively integrate the predictions from the key and current
frames. DAVSS [41] proposes to correct the distorted fea-
tures caused by inaccurate optical flow when propagating
features. Besides the feature propagation paradigm, some
recent works propose to improve the performance of light-
weight models with temporal constraints [8, 23] and atten-
tion mechanism [16, 32, 33].

2.3. Semi-supervised Semantic Segmentation

To achieve good representation learning with limited anno-
tations, semi-supervised image segmentation (SSIS) is stud-
ied by exploring unlabeled data. Existing methods can be
roughly divided into three families. The adversarial based
methods, e.g., AdvSemiSeg [18] and S4GAN [26], utilize
a discriminator to distinguish the confidence maps from
labeled and unlabeled data predictions. The consistency

based methods enforce the consistency of the predictions
or intermediate features with various perturbations. The
perturbations can be conducted on input images, e.g., Cut-
Mix [11], ClassMix [27], and CAC [21], and feature space,
e.g., CCT [28]. The self-learning based methods generate
pseudo segmentation maps on unlabeled data. [3, 14, 36]
propose to generate pseudo labels in an offline manner and
retrain the model iteratively. While PseudoSeg [43] and
CPS [4] follow the FixMatch [31] scheme and design an
online pseudo labeling mechanism.

However, SSIS methods are not designed for video data,
which only regards videos as a collection of independent
images. To tackle this issue, IFR [42] proposed to recon-
struct feature on the labeled frame by that on other frames,
which can provide accurate supervision signals from the
single label for unlabeled frames. IFR essentially utilizes
the content-relevance characteristic of video data.

Generally, existing methods mainly focus on supervision
signal construction and improving feature extraction. Dif-
ferently, in this work, we concentrate on the classifier de-
sign. We find that the per-frame recognition paradigm used
in previous works is different from human’s manner and
thus propose a temporal-dependent classifier.

3. Method

3.1. Overview

Following IFR [42], in semi-supervised video segmentation
task, we are provided with a small set of labeled videos
with one frame annotated and a larger set of unlabeled
videos. Let V = {x1, · · · , xT } represents T frames in a
video with xi as the ith frame with spatial resolution of
H × W . Let DL = {(V L

1 , x̂1, y1), · · · , (V L
nL

, x̂nL
, ynL

)}
represent the nL labeled videos, where x̂i is the anno-
tated frame of the ith video, yi ∈ RC×H×W corresponds
to the pixel-level one-hot label, and C is the number of
classes. Let DU = {V U

1 , · · · , V U
nU

} represents the nU

unlabeled videos. Besides, another set of labeled videos
DV = {(VV

1 , x̂1, y1), · · · , (VV
nV

, x̂nV
, ynV

)} is used for
performance evaluation.

As shown in Figure 3, our framework consists of three
components, i.e., a feature extractor NetB , a conventional
classifier NetC and the proposed temporal-dependent clas-
sifier NetTDC . Two adopted classifiers are used in super-
vised and unsupervised learning branches, respectively. The
reason for retaining the conventional classifier is to keep
consistent with existing works [4, 11, 21, 28, 42] for fair
comparison. In this way, the effectiveness of our TDC for
optimizing unsupervised learning can be clearly revealed.

Our work aims to learn a segmentation model from DL

and DU , and generalize to DV . Following previous works,
the objective of semi-supervised learning can generally be
summarized as two loss functions. The first one is a regular
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Figure 3. Illustration of our SSVS framework. Our framework consists of two learning branches. For supervised learning, we randomly
sample an image I and its corresponding ground-truth GT for model training. For unsupervised learning, we randomly sample a video
clip with several consecutive frames V U . Following the previous work [11], we calculate pseudo labels PLU for V U , which is used as
supervision signals for predictions PU

S from the augmented video V U
S .

cross-entropy loss on the labeled data:

P = NetC(NetB(I)), (1)

Lsup = CrossEntropy(P,GT ), (2)

where image I and its corresponding ground-truth GT are
randomly sampled from DL. The second loss aims to train
model on unlabeled data with some constructed supervi-
sion signals, which is denoted by Lunsup. In our frame-
work, we adopt a simple pseudo label strategy similar to
FixMatch [11, 31] scheme:

V U
S = Ts(V

U ), (3)

PU
S = NetTDC(NetB(V

U
S )), (4)

PLU = argmax(NetC(NetB(V
U ))), (5)

Lunsup = CrossEntropy(PU
S , PLU ), (6)

where V U is randomly sampled from DU and Ts represents
the strong data augmentation like color jitter. Specifically,
we calculate per-frame pseudo labels PLU for V U , which
is used as supervision signals for predictions PU

S from the
augmented video V U

S . Then the overall training objective
can be presented as follows

L = Lsup + λLunsup, (7)

where λ is a trade-off parameter.

3.2. Conventional Classifier

To make it clear, we first elaborate on the process of con-
ventional classifier, and then explain the core mechanism of
our TDC.

A conventional classifier typically consists of a fully
connected layer and a softmax layer. We use wi ∈ Rn

to denote the weight parameters for category i in the fully
connected layer and use f ∈ Rn to denote the feature for
classification. Guided by the cross-entropy loss, the classi-
fier is encouraged to produce a larger inner product between
f and wy , where y is the corresponding ground-truth cate-
gory. After model training, the learned weight parameters
would automatically align with the feature cluster centers,
which is experimentally verified and visualized in previous
works [9, 30]. Here, the cluster center is the mean of fea-
tures belonging to the same category, which is usually de-
noted as prototype.

This tight relationship among features, prototypes and
weight parameters is the basic of our TDC, which provides
a solution for utilizing distinguished semantic concepts to
aid recognition.

3.3. Temporal-dependent Classifier

In this work, we mainly focus on designing a classifier
to mimic the temporal-dependent recognition paradigm on
video data like human’s manner. To this end, we optimize
conventional classifier by introducing distinguished results
from historical frames and then propose a novel classifier,
i.e., the temporal-dependent classifier (TDC).

3.3.1 Prototypes Construction

As shown in Figure 4, when recognizing t+1th frame, TDC
would simultaneously utilize two types of prototypes, i.e.,
global prototypes PTG and context prototypes PTC

t that
calculated based on the prediction of tth frame. Here, sim-
ilar to the conventional classifier, PTG = {wi ∈ Rn|i =
0, 1, · · · , C−1} is implemented as a set of learnable weight
parameters, where C is the number of classes and n is the
feature dimension. PTG is updated by back-propagation
during training and keeps fixed during inference. The key
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Figure 4. Illustration of temporal-dependent recognition pro-
cedure. The critical process is the update of context prototypes
PTC based on the last frame prediction. In the classifier, context
prototypes PTC and global prototypes PTG are utilized together
for recognition.

of TDC is the design of context prototypes, which is calcu-
lated on-the-fly based on the prediction of last frame. Here,
PTC

t = {wck ∈ Rn|k = 0, 1, · · · ,K − 1} represents K
prototypes calculated from the tth frame. Specifically, we
calculate the pseudo label PLt of the extracted feature Ft

of the tth frame as

PLt = argmax(NetC(Ft)). (8)

Then, we group the pixel-wise features in Ft belonging to
the same class k according to PLt, i.e.,

wck =

∑
i F

(i)
t ∗ 1(PL

(i,k)
t == 1)∑

i 1(PL
(i,k)
t == 1)

, (9)

where 1 is an indicator function and PL
(i,k)
t represents the

one-hot pseudo label of pixel i belonging to the kth class.
In this way, context prototypes would be adaptively updated
based on the last frame prediction.

3.3.2 Recognition Procedure

After constructing the global and context prototypes, here
we introduce how to conduct recognition based on theses
prototypes. The core process of recognition is to calcu-
late similarity between the input feature and prototypes with
known categories. After that, the category corresponding to
the prototype that generates the maximum similarity will
be regarded as the semantic prediction. Therefore, a naive
solution is to calculate similarity with global and context
prototypes simultaneously.

However, the input feature would naturally be similar to
context prototypes since they are calculated from consecu-
tive frames and thus global prototypes are always ignored,
especially in the early stage of model training. This short-
cut behavior would make the model only learning to capture

similarity across frames and not being able to learn seman-
tic concepts on unlabeled data. The cause of this issue is
that two types of prototypes are updated in different mech-
anism and contains diverse statistical distribution like mag-
nitudes. Therefore, we first conduct normalization on each
prototype and the input feature respectively before classi-
fication, which can effectively narrow their the distribution
discrepancy and achieve a fair learning process. Thus, the
predicted probability of the ith category is computed as fol-
lows:

pi =
eη·⟨PT i,F t⟩∑
j e

η·⟨PT j ,F t⟩
, (10)

where v = v/||v||2 denotes the L2 normalized vector, and
⟨v1, v2⟩ = vT1 v2 measures the cosine similarity between
two normalized vectors. Here, PT = {PTG, PTC

t } is
the combination of two types of prototypes. Inspired by a
previous work [15], since the range of ⟨v1, v2⟩ is restricted
to [−1, 1], a learnable scalar η is introduced to control the
peakiness of softmax distribution. Differently, we set two
independent scalars, i.e., ηG and ηC , for global prototypes
PTG and context prototypes PTC

t respectively.

3.3.3 Joint-prototypes Label Relaxation

After calculating the probability of input feature based on
constructed prototypes, a cross-entropy loss is applied ac-
cording to a pseudo label, as described in Section 3.1. How-
ever, there is a mismatch between the probability vector
p ∈ RC+K and the one-hot label y ∈ RC , where C and
K are the number of categories and prototypes predicted
in the last frame. Intuitively, for a specific category i, its
corresponding context prototype PTC

t,i and global proto-
type PTG

i are different descriptions for an identical seman-
tic concept. Therefore, for a feature belonging to category
i, it should not be penalized by loss function regardless of
which prototype it is more similar to.

Based on this consideration, we propose a joint-
prototypes label relaxation, which is also inspired by a pre-
vious work [40]. Suppose we are classifying a feature be-
longing to class i and class i is related to two prototypes
PTG

i and PTC
t,i. To achieve label relaxation, we propose to

maximize the likelihood of both prototypes together instead
of any single one. Since two prototypes are mutually exclu-
sive in cross-entropy loss, we aim to maximize the union of
them:

P (PTG
i ∪ PTC

t,i) = P (PTG
i ) + P (PTC

t,i), (11)

where P is the softmax probability of each prototype.
Therefore, for each pixel i in the tth frame in the video clip,
the loss function is as follows:

LTDC =
1

H ∗W
1

T

H∗W∑
i

T∑
t

LTDC(i, t), (12)
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Figure 5. Illustration of bidirectional prediction. We simultane-
ously considering forward (t → t+ 1) and backward (t+ 1 → t)
directions when constructing context prototypes.

LTDC(i, t) = −logP (PTG
yi,t

∪ X (PTC
t−1,yi,t

)), (13)

X (x) =

{
x, if x exists

0, else
(14)

To be noticed, when recognizing the first frame, only
global prototypes are adopted since context prototypes has
not been constructed. This is reasonable and similar to hu-
man’s manner. When obtaining the first frame of a video,
human can only conduct image recognition by recalling
learned experience, i.e., global prototypes, since there is no
prior information about this video.

3.3.4 Bidirectional Constraint

Actually, TDC works in a RNN-like manner, where the out-
put from the previous step can affect the prediction on the
current step. In TDC, the continuously updated prototypes
serve like the hidden state vectors in RNN structure. Ac-
cording to successfully practices [20, 29] in NLP field, com-
paring to unidirectional RNN, bidirectional RNN can help
the model to better exploit contextual information and ef-
fectively improve the model performance.

Therefore, in this work, we further propose a bidirec-
tional constraint, i.e., simultaneously considering forward
(t → t+ 1) and backward (t+ 1 → t) directions, as shown
in Figure 5. Specifically, context prototypes are calculated
based on the t+1th frame to aid the current frame recogni-
tion:

LBi−TDC =
1

H ∗W
1

T

H∗W∑
i

T∑
t

LBi−TDC(i, t), (15)

LBi−TDC(i, t) = −logP (PTG
yi,t

∪ X (PTC
t+1,yi,t

)). (16)

Actually, the primary cause behind the effectiveness of
TDC on semi-supervised learning is that TDC can im-
plicitly impose a temporal consistency constraint across
frames. Intuitively, the bidirectional calculation can further
enhance the constraint by simultaneously considering both
forward and backward consistency. Finally, in this work,
the adopted unsupervised learning loss is as follows:

Lunsup = LTDC + LBi−TDC . (17)

4. Experiments
4.1. Dataset

Cityscapes [6] is a representative dataset in semantic seg-
mentation and autonomous driving domain. It focuses on
semantic understanding to urban street scenes. The train-
ing and validation subsets contain 2, 975 and 500 videos,
respectively, and each video contains 30 frames at a resolu-
tion of 1024 × 2048. The 20th frame in each is annotated
by pixel-level semantic labels with 19 categories.

CamVid [1] also focuses on the semantic understand-
ing to urban street scenes, but it contains less data than
Cityscapes. It has four driving videos and each video con-
tains frames ranging from 3, 600 to 11, 000 at a resolution
of 720× 960. Every 30th frame of videos is annotated with
11 semantic classes, which results in a total of 701 samples.
Similar to Cityscapes, we split videos into 701 videos and
each video contains 30 frames. All videos are divided into
the trainval set with 468 videos and test set with 233 videos.

We follow the partition protocols of IFR [42] and divide
the whole training set via randomly sub-sampling 1/2, 1/4,
1/8, 1/16, and 1/30 of all training videos, i.e., 2975 videos
in Cityscapes and 468 videos in CamVid, as the labeled set
and regard the remaining videos as the unlabeled set. Fol-
lowing previous work [11, 18, 26–28, 42], we apply bilinear
interpolation to resize every video frame in Cityscapes and
CamVid to 512 ∗ 1024 and 360 ∗ 480 for the efficiency of
training and inference.

4.2. Implementation Details

Following IFR [42], we adopt Accel [19] as video semantic
segmentation architecture due to its good performance. It
consists of two segmentation branches, i.e., a heavy refer-
ence branch and a light-weight update branch, an optical
flow network, and a score fusion layer. Similar to IFR,
we adopt semi-supervised methods for two segmentation
branches to improve representation learning with limited
annotations. The segmentation model is trained using a
SGD optimizer with a momentum of 0.9 and a weight decay
of 10−4. The learning rate is set at 10−3 for the backbone
parameters and 10−2 for others, which is annealed follow-
ing the poly learning rate policy.

We evaluate the segmentation performance on the vali-
dation videos, i.e., validation subset in Cityscapes and test



Method 1/30 (100) 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

Accel 45.73 52.10 57.12 60.55 62.83
+ CCT [28] 48.05 (+2.32) 53.25 (+1.15) 58.88 (+1.76) 62.00 (+1.45) 64.02 (+1.19)
+ CAC [21] 48.83 (+3.10) 54.56 (+2.46) 58.55 (+1.43) 62.78 (+2.23) 63.87 (+1.04)
+ CPS [4] 48.97 (+3.24) 54.69 (+2.59) 58.97 (+1.85) 62.43 (+1.88) 63.74 (+0.91)
+ IFR [42] 52.86 (+7.13) 56.39 (+4.29) 60.08 (+2.96) 63.45 (+2.90) 64.53 (+1.70)
+ Ours 55.81 (+10.08) 60.97 (+8.87) 63.12 (+6.00) 65.83 (+5.28) 66.67 (+3.84)

Table 1. Comparison with state-of-the-art methods on the Cityscapes validation subset under different partition protocols. Accel is
adopted as the supervised baseline that is only trained on labeled data. Our method gets more gains especially for few labeled training data.

Method 1/30 (15) 1/16 (29) 1/8 (58) 1/4 (117) 1/2 (234)

Accel 42.37 47.57 50.78 56.40 59.37
+ CCT [28] 47.09 (+4.72) 52.45 (+4.88) 54.50 (+3.72) 58.69 (+2.29) 61.58 (+2.21)
+ CAC [21] 46.85 (+4.48) 52.16 (+4.59) 54.03 (+3.25) 59.67 (+3.27) 63.17 (+3.80)
+ CPS [4] 46.05 (+3.68) 52.04 (+4.47) 55.30 (+4.52) 59.02 (+2.62) 62.49 (+3.12)
+ IFR [42] 49.50 (+7.13) 53.71 (+6.14) 57.37 (+6.59) 61.27 (+4.87) 63.86 (+4.49)
+ Ours 50.95 (+8.58) 55.36 (+7.79) 59.88 (+9.10) 62.63 (+6.23) 64.59 (+5.22)

Table 2. Comparison with state-of-the-art methods on the CamVid test subset under different partition protocols. Accel is adopted as
the supervised baseline that is only trained on labeled data. Our method gets more gains especially for few labeled training data.

set in CamVid. Following Accel, for each test video, we
conduct the reference branch on a selected key frame and
update branch on the annotated frame. The segmentation
results are predicted via the feature propagation and score
fusion. To be notice, for fair comparison, we adopt the con-
ventional classifier for semantic prediction while TDC is
only involved in the training period, since in this work we
mainly investigate the effectiveness of TDC on represen-
tation learning. We evaluate different methods with mean
Intersection-over-Union (mIoU) as metric. The key frame
interval is set as 5 throughout the experiments. For our
TDC, there is a trade-off parameter λ in Eq. 7, which is
set λ = 0.2 for all experiments.

4.3. Performance Comparison

To demonstrate the superiority of our method, we make a
comparison with recent state-of-the-art methods, i.e., three
SSIS methods including CCT [28], CAC [21] and CPS [4],
and a SSVS method IFR [42]. Following IFR, for fair com-
parison, all critical components are keep consistent among
different methods, including base segmentation model, data
splits, data augmentation and training settings (i.e., opti-
mizer and hyperparameters). In this way, we can fairly com-
pare the improvement brought by different methods on the
basis of the same supervised learning baseline.

The comparison on Cityscapes and CamVid is shown in
Table 1 and Table 2. From the results, we have the following
two observations. First, our TDC can bring significant im-
provement under all partition protocols comparing to the su-
pervised learning baseline. A larger gain is achieved for the
cases with less labeled data, e.g., 10.08% mIoU gain with

Lsup
LTDC

LBi−TDC mIoU (%)
PTG PTC

t

√
43.68

√ √
46.78 (+3.10)

√ √ √
50.14 (+6.46)

√ √ √ √
51.29 (+7.61)

Table 3. Ablation study on our proposed components. Each
component can bring performance improvement compared to the
baseline, and their combination performs best.

100 samples in Cityscapes. Such experimental results well
verify that TDC can effectively improve the generalization
of models. Second, our method surpasses other state-of-the-
art methods by a large margin. For example, it outperforms
IFR by 4.58% under 1/16 partition protocol on Cityscapes
and 2.51% under 1/8 partition protocol on CamVid, respec-
tively. It shows that TDC can better utilize the unlabeled
video data for training model.

4.4. Ablation Study

In this subsection, we conduct experiments to reveal
the effectiveness of our proposed method. All experi-
ments are particularly conducted with 1/30 labeled data on
Cityscapes. For efficient training, we adopt PSPNet with
ResNet18 as the segmentation network by default.

Effect of Components. To reveal the contribution of our
proposed components, i.e., global prototypes PTG, context
prototypes PTC

t and bidirectional constraint LBi−TDC , we
conduct an extensive study by evaluating their combina-



λ 0.0 0.05 0.1 0.2 0.5 1.0

mIoU (%) 43.68 46.87 49.62 51.29 50.74 48.54

Table 4. Effect of trade-off parameter λ. Based on the results,
we set λ = 0.2 for all experiments.

T 0 1 2 3 5 7 10

mIoU (%) 43.68 46.87 49.24 50.18 51.29 50.93 50.64

Table 5. Effect of Number of frames. Based on the results, we
sample 5 frames per unlabeled video clip for all experiments.

tions, and the results are shown in Table 3. It can be seen
that each component can bring performance improvement
compared with the baseline. In particular, based on the su-
pervised learning baseline, TDC equipped with only global
prototypes serves like a pseudo-label scheme similar to pre-
vious works [4, 43]. After introducing context prototypes,
TDC can obtain significant improvement. Finally, TDC per-
forms best with bidirectional constraint.

Effect of Trade-off Parameter λ. We investigate the in-
fluence of trade-off parameter λ used to control the unsu-
pervised learning loss in Eq 7, as shown in Table 4. Here,
λ = 0.0 represents the supervised learning baseline. The
results show that: with the increase of λ, the unsupervised
loss help model training on unlabeled data and effectively
overcome the overfitting issue due to limited labeled train-
ing data, which performs best when λ = 0.2. When λ con-
tinuously increases, the performance degrades since the su-
pervised learning branch is interfered. Therefore, based on
the results, we set λ = 0.2 for all experiments.

Effect of the Number of frames. In our framework, we
randomly sample a unlabeled video clip with T frames for
unsupervised learning. Here, we investigate the influence
of number of frames, which relates to the temporal model-
ing in our proposed TDC. Table 5 shows the results. Here,
T = 0 represents the supervised learning baseline and
T = 1 represents using TDC with only global prototypes.
From the results we can see that: as T increases, TDC can
impose a stronger temporal consistency constraint and im-
prove model training on unlabeled video data. However, if
T gets too large, TDC would suffer from training unstabil-
ity and lead to a slight performance degradation. Therefore,
based on the results, we set T = 5 for all experiments.

Performance with Different VSS Architectures. To
study the generalization ability of our method, We apply it
to different video semantic segmentation architectures. We
particularly adopt three widely adopted video segmentation
architectures, i.e., DFF [39], Accel [19] and DAVSS [41].
As shown in Table 6, our proposed method can bring sig-
nificant performance improvement consistently.

Method Baseline +IFR + Ours

DFF [39] 44.19 49.97 (+5.78) 52.63 (+8.44)
Accel [19] 45.73 52.86 (+7.13) 55.81 (+10.08)

DAVSS [41] 46.51 51.97 (+5.46) 55.25 (+8.74)

Table 6. Performance on different VSS architectures. Our
method can bring significant improvement for different video se-
mantic segmentation architectures consistently.

Method Accel + CCT + CAC + CPS + IFR + Ours

TC (%) 70.04 71.43 71.47 70.74 73.88 75.38

Table 7. Comparison on Temporal Consistency. We evaluate
different methods with temporal consistency (TC) score [23]. Our
proposed method can bring a significantly improvement.

Effectiveness on Temporal Consistency. It is important
for VSS methods to produce temporally stable predictions.
Thus, we further verify the effectiveness of our method on
improving temporal consistency. Particularly, we follow
previous works [23, 42] and adopt temporal consistency
(TC) score as the evaluation metric. As shown in Table 7,
our method can bring a significant improvement, since con-
sistent predictions among different frames can be achieved.

5. Conclusion

In this paper, we focus on the semi-supervised video seman-
tic segmentation problem, and propose a novel temporal-
dependent classifier (TDC). Motivated by the observation of
human’s behavior, TDC is designed to utilize distinguished
semantic concepts of historical frames when recognizing
the current frame, which is more suitable for video data.
We found that TDC can achieve significant performance im-
provement in semi-supervised learning since its recognition
mechanism implicitly imposes a temporal-consistency con-
straint across frame, which is valuable especially in label-
scarce scenarios. To further enhance the effect of TDC, we
propose a bidirectional constraint by simultaneously con-
sidering both forward and backward calculation. Extensive
experiments on Cityscapes and CamVid validated the effec-
tiveness of our method, which outperforms previous state-
of-the-art methods.
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