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Abstract. Despite advances in deep learning, current automated meth-
ods for strabismus classification face two key challenges: limited inter-
pretability and a lack of focus on strabismus subtypes. These issues un-
dermine clinical trust, hinder practical adoption, and limit personalized
treatment. To address this, we propose a Causality-Inspired Graph Neu-
ral Network (CI-GNN) framework that identifies causally related visual
features from eye regions and constructs a graph structure for robust
prediction, moving beyond reliance on raw image pixels. This causality-
driven design enhances both interpretability and clinical relevance by
providing more transparent diagnostic outcomes. We also establish a
representative benchmark for strabismus subtype classification, focus-
ing on deviation direction and horizontal angle variation (e.g., A/V-
pattern). Experiments show that our method achieves state-of-the-art
accuracy—89.8% and 88.1% on the two subtype tasks, respectively. Fur-
thermore, by incorporating the SHapley explanation technique, CI-GNN
offers clinician-friendly diagnostic evidence. Leveraging sparse causal fea-
tures, the framework requires only 0.0003 GFLOPs, making it highly ef-
ficient and suitable for edge deployment. Overall, this work demonstrates
the potential of integrating causal knowledge with GNNs to significantly
enhance the performance, efficiency, and interpretability of strabismus
diagnosis, offering promising directions for intelligent medical applica-
tions.
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1 Introduction

Strabismus is a condition characterized by abnormal eye alignment, preventing
both eyes from focusing on the same target simultaneously, resulting in the
inability of the visual axes to intersect at the point of fixation. Approximately 3%
of the global population is affected, making strabismus one of the most common
visual disorders in children [1, 2]. Without timely diagnosis and intervention,
strabismus can lead to significant binocular vision impairment. Early diagnosis
and surgical correction, especially during critical periods of visual development,
can effectively restore proper alignment and prevent long-term visual problems.
Therefore, early screening and accurate diagnosis are essential[3–5].
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Fig. 1. Comparison of Previous Works and Our Approach. The upper section of
the figure summarizes existing methods, while the lower section illustrates the approach
proposed in this work, which addresses two major challenges: limited interpretability
and the lack of subtype classification.

Traditionally, strabismus diagnosis and accurate subtype classification rely
on specalized ophthalmic instruments, which are primarily available in tertiary
hospitals. Recent advances in deep learning (DL) have shown promise in im-
proving accessibility for strabismus diagnosis. However, while DL-based meth-
ods provide high diagnostic accuracy and adaptability, their "black-box" nature
hinders interpretability and limits clinician trust[6–9]. Moreover, existing sys-
tems typically offer binary classification[10, 11], detecting only the presence of
strabismus, which fails to capture fine-grained subtypes (e.g., direction or angle
changes), limiting their utility in personalized treatment planning and surgical
strategy optimization[12–15].

To address these challenges, we propose the Causality-Inspired Graph Neu-
ral Network (CI-GNN) framework, which is compatible with mainstream causal
discovery methods and is both scalable and adaptable, as shown in Fig. 1. By
incorporating causal relationships, our approach enhances interpretability and
offers a more clinically relevant model. The core innovation lies in automatically
identifying and analyzing causally-related visual features from raw image pixels,
which are then used to construct a clinician-interpretable, graph-like representa-
tion. Notably, these features align with strabismus clinical guidelines [16], con-
firming their biological relevance based on our experimental results. Leveraging
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Fig. 2. Overview of our CI-GNN framework. The framework consists of four
stages, including data acquistion, candidate feature extraction, causal feature selection,
and graph data modeling.

these key representations, we apply a graph neural network for robust modeling
and prediction, while providing clinician-friendly diagnostic evidence by high-
lighting abnormal visual features. This enables more intuitive and interpretable
diagnoses than traditional DL models.

To advance strabismus subtype classification, we develop a benchmark tar-
geting key subtypes: strabismus deviation direction (e.g., esotropia, exotropia,
vertical) and horizontal angle variations between upgaze and downgaze (e.g.,
A-pattern, V-pattern, non-AV-pattern). Extensive experiments show that our
framework outperforms state-of-the-art models in both accuracy and interpretabil-
ity.

By leveraging causally-related graph features instead of raw image pixels,
our method reduces computational cost to just 0.0003 GFLOPs—approximately
1/100, 000 of traditional CNNs—making it ideal for edge deployment(e.g., Rasp-
berry Pi), in resource-constrained settings.

This work demonstrates the potential of integrating causal knowledge with
graph neural networks to significantly enhance the performance, efficiency, and
interpretability of strabismus subtype classification, offering valuable insights for
intelligent medical systems.

2 Method

2.1 Framework

We propose a Causality-Inspired Graph Neural Network (CI-GNN) framework
for interpretable strabismus subtype classification, as illustrated in Fig. 2. In the
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data acquisition stage, patients are instructed to gaze in nine specific directions,
following the Hirschberg test [17], to capture abnormal eye movement patterns
crucial for subtype classification. Facial landmarks are then detected to construct
a nine-gaze photograph in a bottom-to-top, left-to-right order for structured
representation.

The core innovation of our framework lies in extracting high-level candidate
features from raw image pixels and incorporating a causal discovery mechanism
to identify critical diagnostic features (Stages 2 and 3 in Fig. 2). The identified
causal features are then structured into a graph representation based on the
nine-gaze topology. Finally, a graph neural network (GNN) is employed for data
modeling and prediction, ensuring both diagnostic accuracy and interpretability
(Stage 4 in Fig.2).

2.2 Candidate Feature Extraction

Interpretable model behavior requires extracting high-level features from raw
image pixels, such as the iris and orbital centers. To achieve this, we perform
candidate feature extraction guided by clinical guidelines and ophthalmologists’
observations, effectively integrating expert knowledge.

Since diagnosing deviation direction and angle changes involves different in-
formation, we construct separate candidate feature pools for each task. Table 1
presents the features used for deviation direction diagnosis. This transformation
converts raw image data into clinician-interpretable features, establishing the
basis for explainable diagnosis.

Table 1. Candidate Features for Strabismus Direction Classification

Candidate Features Meaning

(xL
iris, yL

iris), (xR
iris, yR

iris) Coordinates of the left and right iris centers

(xL
eye, yL

eye), (xR
eye, yR

eye) Coordinates of the left and right orbital centers

(xL
ls, y

L
ls), (xR

ls, y
R
ls) Coordinates of the left and right eye light spots

dls Distance between the left and right eye light spots

dirls Distance between the centers of the left and right irises

θdeviation Cosine angle between the left and right eye light spots

2.3 Causal Feature Selection

The constructed candidate feature pool contains both continuous variables (e.g.,
coordinate points) and discrete variables (e.g., strabismus diagnostic categories
such as direction and angle). To extract essential diagnostic features, we employ
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a score-based causal reasoning approach for mixed-type data, inspired by the
HCM algorithm [18].

First, we apply the PC [19] algorithm and MRCIT [18] for skeleton learning,
followed by a greedy algorithm for causal directed acyclic graph (DAG) construc-
tion. The process initializes an empty DAG and iteratively adds edges based on
the maximum score gain.

The initial score for the j-th candidate feature from the candidate feature
pool is defined as:

S(∅, Xj) =
1

n

n∑
i=1

log (Pr(Xj = xi,j)) , (1)

where Xj represents the j-th feature, and xi,j is its value for the i-th observa-
tion. Pr(Xj = xi,j) denotes the empirical probability, estimated via frequency
for discrete variables and kernel density estimation (KDE)[20] for continuous
variables.

At each iteration, the gain from adding a potential edge l → j is computed
as:

Sj(P
G
j ∪ {l};Xj). (2)

The edge yielding the highest gain is added to the DAG, ensuring the most in-
formative causal relationships for strabismus diagnosis. The learned DAG is sub-
sequently pruned using MRCIT to test conditional independence among parent-
child pairs, eliminating redundant edges. The final causal DAG encapsulates the
most significant diagnostic dependencies.

To refine feature selection, we extract the Markov blanket[21] of the target
variable y (strabismus diagnosis outcome), comprising its direct causes, direct
effects, and variables that render y conditionally independent from the rest.
This ensures a compact yet informative causal feature set, enhancing both inter-
pretability and efficiency while mitigating overfitting and aligning with clinical
diagnostic reasoning.

2.4 Graph Data Modeling

We define the graph structure for strabismus diagnosis as:

G = (ν, ε, χ) , (3)

where ν = {v1, v2, . . . , v9} denotes the nine nodes corresponding to gaze positions
in the nine-gaze photograph. The graph is fully connected, i.e., ε ⊆ ν × ν.
The node feature matrix X ⊆ RN×d contains d-dimensional feature vectors
Xi ⊆ Rd for each node vi where d is the number of selected causal variables
for classification. We use a Graph Convolutional Network(GCN)[22] to extract
features by propagating information through the graph. At each layer, node
features are updated using a normalized adjacency matrix and a learnable weight
matrix W . The graph convolution is defined as:

H(l+1) = σ(ÂH(l)W (l)), (4)
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Table 2. Discovered Causal Features for Strabismus Subtype Classification

Deviation Direction Meaning

(xL
iris, yL

iris), (xR
iris, yR

iris) Coordinates of the left and right iris centers

xL
ls, x

R
ls The x coordinates of the left and right eye light spots

xL
iris The x coordinates of the left iris centers

Deviation Angle Meaning

θLeye The cosine angle between the iris
θReye and orbital centers of the eyes

∆θ2, ∆θ7 The angle difference ∆θi between the eyes
∆θ8, ∆θ9 at the ith region in nine-gaze photograph

∆θ1−7, ∆θ2−8,∆θ3−9 The angle difference ∆θi−j between the ith and jth

where H(l) is the node feature matrix at layer l, Â = D−1/2AD−1/2 is the
normalized adjacency matrix, A is the adjacency matrix, D is the degree matrix,
and σ is the ReLU[23] activation function. W (l) is the learnable weight matrix
at layer l. This graph-based formulation captures spatial dependencies among
gaze positions, improving both classification performance and interpretability.

3 Experiment and Results

3.1 Datasets

Existing strabismus datasets[24] often suffer from limited sample sizes and coarse-
grained labels. To address this, we constructed a large-scale clinical dataset com-
prising 1,075 real cases for strabismus subtype classification. Each patient con-
tributed nine facial images, each corresponding to a specific gaze direction. The
dataset includes six label categories: A-pattern, V-pattern, non-AV-pattern, es-
otropia, exotropia, and vertical strabismus. We split the dataset into training,
validation, and test sets in an 8:1:1 ratio.

3.2 Biological Interpretation of Selected Causal Features

The causal features selected by our method, as listed in Table 2, align with
clinical guidelines [16], reinforcing their interpretability and biological relevance
in strabismus diagnosis.

For direction classification, including esotropia (inward eye tilt), exotropia
(outward eye tilt), and vertical strabismus (upward or downward misalignment),
the variables (xL

iris, y
L
iris), (xR

iris, y
R
iris), and xL

ls, x
R
ls capture key positional data

of the irises and eye light spots, directly reflecting the horizontal and vertical
misalignment of the eyes.
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Table 3. Performance comparison with main-stream models

Performance Comparison

Model VGG-16 ResNet50 ViT Swin ViT Ours

Accang 0.738 0.794 0.869 0.850 0.881

Accdir 0.878 0.869 0.850 0.850 0.898

Cross-Environment Validation

Model VGG-16 ResNet50 ViT Swin ViT Ours

Accang 0.655 0.689 0.689 0.689 0.825

Accdir 0.689 0.613 0.638 0.428 0.750

For angle variation, A-pattern is characterized by a greater downward gaze
angle than the upward gaze angle, while V-pattern exhibits the opposite trend.
The variables θLeye and θReye, representing the cosine angles between the iris and
orbital centers, capture eye alignment. Additionally, ∆θ2, ∆θ7, ∆θ8, and ∆θ9
quantify interocular misalignments in specific gaze regions, while ∆θ1−7, ∆θ2−8,
and ∆θ3−9 capture angular differences between upward and downward gaze po-
sitions, facilitating A/V-pattern recognition.

3.3 Results

Performance Comparison We evaluated our method against state-of-the-art
models, including VGG [25], ResNet [26],ViT [27], and SwinViT [28], following
standard image classification pipelines, ensuring fair comparisons with standard-
ized data augmentation and training settings. Classification performance was as-
sessed using Accdir and Accdeg for strabismus deviation direction and deviation
angle classification, respectively. As shown in Table 3, our method consistently
outperforms existing models.

For generalizability, we conducted cross-environment validation on 130 stra-
bismus patients from a major medical institution (2016–2019). Our framework
demonstrated robustness across diverse imaging conditions, demographics, and
equipment, ensuring reliability in clinical deployment.

Leveraging causal feature selection, our method drastically reduces compu-
tational cost. Compared to ViT’s 22.08 GFLOPs, our approach requires only
0.0003 GFLOPs—1/100, 000 of ViT’s cost—making it highly efficient and suit-
able for resource-limited medical environments.

Ablation Study In this subsection, we conduct experiment to reveal the effec-
tiveness of our proposed method.

Effect of Proposed Components Our proposed CI-GNN framework comprises
three key components: candidate feature extraction (CFE), causal feature se-
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Table 4. Ablation study on the proposed components

CFE CFS GDM Accang Accdir

0.729 0.729
✓ 0.835 0.231
✓ ✓ 0.817 0.815
✓ ✓ ✓ 0.881 0.898

Diagnosis : Esotropia

Evidence : The X-coordinates of the iris 
centers in both eyes at 5�ℎ gaze position 
exhibit abnormal alignment.

Diagnosis : A-pattern
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and Δ�2−8 (between the 2��and 8�ℎ gaze 
positions) are abnormal
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Fig. 3. Illustration of Interpretable Diagnosis. Compared to CAM, our method
generates diagnostic evidence that is more easily interpretable by clinicians.

lection (CFS), and graph data modeling (GDM). To evaluate their contribu-
tions, we conducted an ablation study by systematically removing each module:
(1) bypassing CFE by using raw image data for prediction, (2) omitting CFS
by utilizing the entire candidate feature pool, and (3) replacing GDM with a
standard MLP structure. In Table 4, each component contributes significantly
to performance improvement, demonstrating its effectiveness. Notably, the full
model achieves the highest overall accuracy, highlighting the synergy among the
proposed modules.

Interpretability While our method achieves the highest accuracy in strabismus
subtype diagnosis, its key advantage lies in providing clinically interpretable
diagnostic evidence. To illustrate this, we present interpretability analyses for
two representative cases and compare them with CAM [29] heatmaps gener-
ated by ResNet, as shown in Fig.3. Leveraging Shapley-based explanation tech-
niques, our approach precisely localizes critical eye features associated with the
patient’s condition, enhancing clinicians’ understanding and validation of the
model’s decision-making process. In contrast, CAM heatmaps highlight broad,
less specific regions, making it challenging for clinicians to interpret the under-
lying diagnostic reasoning.
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4 Conclusion

We proposed a Causality-Inspired Graph Neural Network (CI-GNN) framework,
for interpretable strabismus subtype classification. By integrating causal discov-
ery with graph neural networks, our approach enhances both diagnostic accu-
racy and interpretability. Experimental results demonstrate its superiority over
existing methods, achieving state-of-the-art performance while significantly re-
ducing computational costs. Future work will explore its extension to broader
ophthalmic disorders and real-time clinical applications.
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