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Video Semantic Segmentation With
Distortion-Aware Feature Correction

Jiafan Zhuang , Zilei Wang , Member, IEEE, and Bingke Wang

Abstract— Video semantic segmentation aims to generate an
accurate semantic map for each frame in a video. For such
a task, conducting per-frame image segmentation is generally
unacceptable in practice due to high computation cost. To address
this issue, many works perform the flow-based feature propaga-
tion to reuse the features of previous frames, which essentially
exploits the content continuity of consecutive frames. However,
the estimated optical flow would inevitably suffer inaccuracy
and then make the propagated features distorted. In this arti-
cle, we propose a distortion-aware feature correction method
with the goal of improving video segmentation performance
at a low price. Our core idea is to correct the features on
distorted regions using the current frame while reserving the
propagated features for other regions. In this way, a lightweight
network is enough for achieving promising segmentation results.
In particular, we propose to predict the distorted regions by
utilizing the consistency of distortion patterns in images and
features, such that the high-cost feature extraction from current
frames can be avoided. We conduct extensive experiments on
Cityscapes, CamVid, and UAVid, and the results show that our
proposed method significantly outperforms previous methods and
achieves the state-of-the-art performance on both segmentation
accuracy and speed. Code and pretrained models are available
at https://github.com/jfzhuang/DAVSS.

Index Terms— Video semantic segmentation, feature propaga-
tion, distortion prediction, feature correction.

I. INTRODUCTION

SEMANTIC segmentation is to assign each pixel in the
scene a semantic class, which is currently an active

research topic in computer vision. In recent years, image
semantic segmentation has achieved unprecedented accu-
racy benefited from the great progress of deep convolu-
tional neural networks (DCNN) [1] and various datasets
(e.g., Cityscapes [2], CamVid [3], and UAVid [4]). However,
many real-world applications have strong demands for fast
and accurate video semantic segmentation, e.g., robotics [5],
autonomous driving [6], and video surveillance [7]. Compared
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to images, videos involve much larger volume of data, and thus
always require more efficient segmentation algorithms.

A naive approach for video segmentation is to directly
apply the image segmentation model in a per-frame way. But
such deployment is generally unacceptable in practice due
to too heavy computational burden. Actually, the consecutive
frames of a video are often similar in a large portion of
content, and it is unnecessary to reprocess every pixel of the
video frame using an image segmentation model [9]. Then an
intuitive idea for video semantic segmentation is to reuse the
features extracted from the previous frames when segmenting
the current frame [8]. Naturally, the feature propagation is
proposed to reduce the overall computational complexity.

In recent years, some feature propagation based methods
have been proposed for video semantic segmentation, e.g.,
DFF [8], NetWarp [10], DVSNet [9], and Accel [11]. These
methods first compute the optical flow between the key frame
and the current frame, and then produce the features of the cur-
rent frame by propagating the features of the key frame under
guidance of optical flow. Here the bilinear interpolation is
usually used as the feature warping operator. The CNN-based
optical flow estimation methods (e.g., FlowNet [12], [13],
FlowNet2.0 [13]) are preferred since they are easy to be
embedded into the video segmentation framework for end-
to-end training. Evidently, the accuracy of optical flow estima-
tion would determine the quality of propagated features and
performance of semantic segmentation.

Despite the great progress in the past decades, accurate
optical flow estimation remains a challenging problem [14].
In particular, the occlusion caused by scene motion makes the
optical flow estimation ill-posed since no visual correspon-
dence exists for the occluded pixels [15]. When the inaccurate
optical flow is used in feature propagation, the produced
features would get distorted and incorrect segmentation results
may be further generated. In addition, for small or slender
areas of a single class (e.g., pedestrian, pole), a slight offset of
predicted optical flow would cause sensible distortion, which
is especially serious for long-distance propagation. We show
the typical distortion phenomenon in Fig. 1. The distortion
of feature propagation needs to be carefully tackled in video
semantic segmentation.

Some existing methods can alleviate feature distortion by
modulating the propagated features. For example, DFF [8]
attaches a scale field to optical flow estimation and adjusts
the propagated features via element-wise multiplication.
Accel [11] proposes to extract features from the current
frame with a lightweight model and then fuse the extracted
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Fig. 1. Illustration of distortion phenomenon in feature propagation.
The segmentation results of an example video produced by DFF [8] are
demonstrated, where T + i denotes the i-th frame from the key frame T .
In particular, we also give the ground-truth segmentation of the frame T + 9
for comparison. Red rectangles highlight the distorted regions caused by
inaccurate optic flow estimation. Best viewed in color and zoom in.

Fig. 2. Visualization of false correction. The propagated and corrected
features are visualized and represented by their segmentation results. The
upper case is from DFF and the blow one is from Accel50. Red rectangles
highlight the areas corrected wrongly. Best viewed in color.

and propagated features to perform semantic segmentation.
However, these works equally treat every pixel of the current
frame without distinguishing the quality of propagated
features among different pixels. Consequently, the regions
where the features are correctly propagated may be modulated
to be wrong, namely, false correction may occur. We show
typical cases of such a phenomenon in Fig. 2. Besides,
we check the ratio of the number of pixels wrongly and
rightly rectified, and the statistics of different methods on
Cityscapes val subset are shown in Fig. 3. Evidently, many

Fig. 3. Statistics of false correction on Cityscapes val subset. Here the
ratio of the number of pixels wrongly and rightly rectified is particularly
calculated for different methods. It can be seen that some correct propagated
features would be wrongly rectified, and our proposed method can achieve
the best result.

correct features are wrongly rectified, even for models
equipped with a heavy network (e.g., Accel50).

In this work, we propose a novel distortion-aware feature
correction method to rectify the propagated features, aiming
at improving the accuracy of video semantic segmentation
at a low price. Our key idea is to correct the features on
the distorted regions while reserving the propagated features
for other regions. With such a design, a lightweight network
can be enough to perform the rectification. To this end,
we need first to identify the distorted regions. An intuitive
approach is to extract features from the current frame using
an image segmentation model, and then get the misalign-
ment regions by comparing the extracted and propagated
features. However, extracting the features would involve too
high computation cost. To tackle the issue, we propose to
get the distorted regions through image comparison of video
frames. Actually, the distortion is mainly caused by inac-
curate optical flow, i.e., the distorted regions are essentially
the regions where the optical flow is miscalculated. So we
propose to concurrently propagate video frames with the same
optical flow as in feature propagation, and then compare
the propagated frame and current frame in the image space
to get the distorted regions. Our proposed method essen-
tially utilizes the consistency of the distortion patterns for
images and features, as shown in Fig. 4. Following this
idea, we propose a very lightweight network to predict the
distortion maps.

Then we propose a feature correction module (FCM) to
perform distortion correction on the propagated features. Here
the predicted distortion maps are utilized in two folds. First,
we propose a CFNet to extract the correction cues from the
current frame, and enforce it to focus on the distorted regions
by applying the distortion map to the calculation of training
loss. CFNet can be designed very lightweight since only the
capacity to process the distorted regions is required. Second,
FCM uses the distortion maps to identify the important regions
on which the propagated features need to be rectified greatly
by correction cues. Consequently, the correction cues from the
current frame dominate the distorted regions while the prop-
agated features dominate other regions. Finally, we conduct
semantic segmentation on the corrected features.
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Fig. 4. Illustration of distortion consistency for images and features.
We provide the segmentation results of the propagated and extracted features
in the first row, and the propagated image from previous frame and current
frame in the second row. Red rectangles highlight the main distorted regions.
It can be seen that similar distortion patterns present for images and features.
Best viewed in color and zoom in.

The contributions of this work are summarized as

• We propose a novel distortion-aware feature correction
method for video semantic segmentation, which can
effectively boost the segmentation performance at a low
price by focusing on the distorted regions.

• We propose a lightweight network to predict the distorted
regions of propagated features, which works in the image
space and can effectively guide feature correction.

• We experimentally evaluate the effectiveness of our pro-
posed method, and the results on Cityscapes, CamVid,
and UAVid demonstrate the superiority of our method
to previous state-of-the-art methods, especially for
long-distance feature propagation.

The rest of this article is organized as follows. We review
the related works on image and video semantic segmen-
tation, optical flow estimation, and attention mechanism in
Section II. Section III provides the details of our approach,
and Section IV experimentally evaluates the proposed method.
Finally, we conclude the work in Section V.

II. RELATED WORK

A. Image Semantic Segmentation

Benefited from the rapid development of DCNN [16]–[20],
more and more semantic segmentation networks spring up.
Specifically, the fully convolutional network (FCN) [1] firstly
uses the convolutional layers to replace fully-connected layers,
and better performance is achieved. Inspired by FCN, many
extensions [21]–[23] have been proposed, which together
advance image semantic segmentation. The dilated layers [24],
[25] are also introduced to replace the pooling layers, which
can better balance the computational cost and size of receptive
fields. In addition, [24], [26], [27] propose to use the condi-
tional random field (CRF) to refine the results of image seg-
mentation. Recently, spatial pyramid pooling [28] and atrous
spatial pyramid pooling (ASPP) [24], [29] are respectively
used in PSPNet [21] and DeepLab [24] to capture multi-scale
contextual information. MPF [30] uses a new structural context

descriptor and a self-weighted multiview clustering method
for robust group detection. Priori s-CNNs [31] learns priori
location information at superpixel level and adopts a soft
restricted MRF energy function to reduce over smoothness.
CCNet [32] contains a criss-cross attention module to harvest
the contextual information. HRNet [33] maintains the high res-
olution feature in the whole process and fuses multi-resolution
features repeatedly for reliable and discriminative representa-
tions. SANet [34] applies the pixel-group attention to cap-
ture spatial-channel inter-dependencies. Li et al. [35] propose
to generate data-dependent routes for adapting to the scale
distribution of each image. Lin et al. [36] propose to use
skeleton representation to effectively bridge the synthesis
and real domains and achieve comparable performance on
multi-person part segmentation without any human-annotated
labels. Ca-crfs Net [37] introduces cascaded CRFs into the
decoder to learn boundary information and enhance the ability
of object boundary location. The great progress of image
semantic segmentation offers foundation for video semantic
segmentation.

B. Optical Flow Estimation

Optical flow is a representative pattern describing the appar-
ent motion of objects in the video. Optical flow estimation is
a fundamental task in the video analysis domain. Classical
variational approaches formulate optical flow estimation as an
energy minimization problem [39], [40]. Such methods are
effective for small motion, but tend to fail when displacements
are relatively larger. Recent works use convolutional neural
networks (CNNs) to improve sparse matching by learning an
effective feature embedding [12], [13], [41], [42].

Although current methods can generate satisfactory optical
flow in most common cases, it is still a challenging problem to
calculate accurate optical flow for occlusion areas. Most meth-
ods detect occlusion by consistency check on the estimated
forward and backward optical flow [43], [44], and then extrap-
olating the occluded areas. But the used optical flow would be
adversely affected by the occlusion. Evidently, the propagated
features under the guidance of inaccurate optical flow would
be severely distorted, especially for occlusion areas.

Actually, most video semantic segmentation methods prefer
the current state-of-the-art CNN networks for predicting the
optical flow [12], [13], [41], [45] because they are easily
embedded for end-to-end training. However, these methods
do not explicitly deal with occlusion, and consequently video
segmentation would suffer from severe feature distortion. Thus
how to deal with the feature distortion efficiently and effec-
tively is crucial for the optical flow based video segmentation
methods.

C. Attention Mechanism

Attention mechanism has been widely used in computer
vision. It can effectively increases the representational power
of neural networks by selectively weighting the feature
maps. For example, [46] proposes a squeeze-and-excitation
(SE) module to adaptively recalibrate channel-wise fea-
ture responses by explicitly modeling interdependencies
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between channels. OCNet [47] and DANet [48] utilize
self-attention mechanism to harvest the contextual infor-
mation. Chen et al. [50] propose the reverse attention to
guide side-output residual learning in a top-down manner.
Chen et al. [51] propose a visual attention mechanism which
can bridge high-level semantic information to help the shallow
layers locate salient objects and filter out noisy response in
the background region. BiANet [52] introduces a bilateral
attention module to focus on the foreground region with a
gradual refinement style and recover potentially useful salient
information in the background region. Fan et al. [53] proposes
a parallel reverse attention network to aggregate the features
in high-level layers and mine the boundary cues using the
reverse attention module. In this article, we propose to only
focus on the distorted regions of propagated features under the
guidance of predicted distortion maps.

D. Video Semantic Segmentation

Different from static images, videos embody useful tem-
poral information that can be exploited. So many previous
works focus on modeling cross-frame relations to integrate
the information from different frames to boost the semantic
segmentation accuracy. STFCN [54] utilizes a spatial-temporal
LSTM over per-frame CNN features. Nilsson and Sminchis-
escu [55] propose to use the gated recurrent units to propagate
semantic labels. Gadde et al. [10] propose to fuse the features
warped from the key frame and those from the current frame.
V2V [56] utilizes a 3D CNN to perform a voxel-level predic-
tion. Wang et al. [57] propose a metadata-based global pro-
jection model with the coordinate transformation to estimate
motion information between frames.

On the other hand, many works reduce the overall com-
putation cost of video semantic segmentation by utilizing the
content continuity of consecutive frames. Clockwork Net [58]
updates different levels of feature maps with different fre-
quencies. DFF [8] estimates the optical flow fields from the
key frame to other frames and then propagates the high-level
features using the predicted optic flows. DVSNet [9] builds a
decision model to dynamically choose the key frames, which
can achieve better balance between quality and efficiency.
Li et al. [38] propose spatially variant convolution to adap-
tively fuse the features over time. Accel [11] proposes a
reference branch to extract high-quality segmentation from
the key frames and an update branch to efficiently extract
low-quality segmentation from the current frames, and then
fuses them to improve the segmentation accuracy. TDNet [59]
distributes several sub-networks over sequential frames and
then recomposes the extracted features for segmentation via
an attention propagation module.

A related task to video semantic segmentation is video
object segmentation. Several works [60]–[62] reduce the struc-
tural complexity of the graphical model with spatio-temporal
superpixels. Chen et al. [63] propose a two-stage framework of
integrating motion and appearance cues for foreground object
segmentation in unconstrained videos. Liu et al. [64] propose
a guided co-segmentation network to simultaneously incor-
porate the short-term, middle-term, and long-term temporal
inter-frame relationships.

In this work, we follow the route of feature propagation for
video semantic segmentation. Different from previous works
that equally treat every pixel of a video frame, we propose to
focus on the distorted regions when rectifying the propagated
features. In this way, the semantic segmentation results can be
more effectively enhanced, and the used network can be more
lightweight for high efficiency.

III. OUR APPROACH

In this work, we try to boost the accuracy of video semantic
segmentation on the non-key frames effectively and efficiently
under the framework of optical flow based feature propagation.
To this end, we propose a distortion-aware feature correction
method, and the core idea is to correct the features on the
distorted regions while reserving the propagated features for
other regions. For such an idea, we need to design an elegant
solution to address the following issues, namely, 1) how to
identify the distorted regions, 2) how to extract the correction
cues from the current frame, and 3) how to effectively perform
feature correction. In the following, we first introduce the
framework of our proposed method. Then we elaborate on
two main components of the proposed method: distortion map
prediction and feature correction. Finally, we provide training
details of our proposed network.

A. Framework

The framework of our proposed approach is illustrated
in Fig. 5, where semantic segmentation is performed on the
feature of each frame individually. To be specific, each of
the video frames is treated as the key or non-key frame.
For the key frames, we directly conduct image semantic
segmentation to get the results using an off-the-shelf network,
and the intermediate features are propagated to subsequent
non-key frames. In particular, we propagate the features in a
frame-by-frame way during inference. That is, the feature of
the current frame is first produced by propagating that of the
previous frame, in which the predicted optical flow is used as
the guidance and the bilinear interpolation is usually adopted
as the warping operator. Along with feature propagation,
we also propagate the video frame with the same optical flow,
resulting in the propagated frame. For the non-key frames,
we first feed the propagated frame and current frame into
our proposed distortion map network (DMNet) to predict
a distortion map, which actually represents the distortion
pattern of the propagated feature. Then we use the current
frame to rectify the propagated feature under the guidance
of the predicted distortion map. We complete such feature
rectification in the proposed feature correction module (FCM).
Finally, we conduct semantic segmentation on the corrected
feature to get the segmentation result of the current frame.

The key components of our proposed framework are the
distortion map prediction and feature correction. In our
implementation, we particularly adopt DeepLabv3+ [65] as
the image semantic segmentation model due to its great
performance in both accuracy and efficiency. The modified
FlowNet2-S [13] is used for optical flow estimation.
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Fig. 5. Framework of our proposed approach. F and F P represent the original video frame and propagated one from previous frame, respectively.
Particularly, the frames Ft and Ft+3 are selected as the key frames for illustration. In real deployment, the key frames can be selected by a fixed-interval
schedule like in [8] or an adaptive schedule like in [9] and [38]. For the key frames, the feature f S is extracted via an image segmentation network Netseg .
For the non-key frames, the propagated feature f P is first produced through frame-by-frame propagation, and then is rectified into fC by feature correction
module (FCM) that combines the correction cues extracted from the current frame under the guidance of the distortion map M D . Here M D is predicted by
a lightweight network DMNet taking as input the propagated and current frames. Best viewed in color.

Fig. 6. Illustration of our proposed DMNet. Following the design of
siamese networks, DMNet takes in the propagated frame and current frame
to perform feature extraction and similarity computation.

B. Distortion Map Prediction

In this work, we propose a distortion map network (DMNet)
to predict the distorted area of propagated features. Here
we do not extract any high-level feature from the current
frame since it involves too high computation cost. Instead,
we compare the propagated frame and the current frame to get
the distorted regions, which actually exploits the consistency
of distortion pattern for images and features. To be specific,
we follow the design of siamese networks to build DMNet
that calculates the difference between the propagated frame
and the current frame, as shown in Fig. 6. To achieve high

computational efficiency, the feature extractor is designed to
only comprise four separable convolutional layers interlaced
with BatchNorm and ReLU layers. Consequently, the involved
computation cost is nearly negligible. Then we can calculate
the cosine similarity of two features, resulting a similarity map
S. Formally, let ft and f D

t denote the features from the current
frame Ft and propagated frame F P

t , respectively. Then

St (p) = �f̄t (p), f̄ D
t (p)� = f̄ D

t (p)f̄T
t (p), (1)

where p denotes the spatial position, f̄ = f/�f�2 denotes the
�2-normalized feature, and f̄T is the transpose of f̄ . Obviously,
the distorted regions would have lower value on the similarity
map. To obtain the distortion map M D

t , we normalize the
similarity map as

M D
t = (−St + 1)/2. (2)

In our implementation, we use the supervised learning to
train DMNet, as shown in Fig. 7. Here the ground truth
of distortion maps is obtained by calculating the difference
of segmentation results between the propagated feature and
extracted feature from the current frame. To be specific,
we propagate the feature of Ft to Ft+k to get the propagated
feature f P

t+k , where Ft+k denotes the k-th frame from the frame
Ft . Then we get the segmentation result of f P

t+k via an argmax
operation. Meanwhile, we get the segmentation result of Ft+k

using the image segmentation model. Finally, we produce the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 14,2023 at 08:00:49 UTC from IEEE Xplore.  Restrictions apply. 



ZHUANG et al.: VIDEO SEMANTIC SEGMENTATION WITH DISTORTION-AWARE FEATURE CORRECTION 3133

Fig. 7. Illustration of training DMNet. Flowt represents the predicted
optical flow from Ft to Ft+k . The distortion map for training DMNet is
obtained by calculating the difference between the segmentation results of
the propagated features and current frame.

distortion map for DMNet by applying the XOR operator on
two segmentation results.

C. Feature Correction Module

In this work, we explicitly rectify the propagated feature
using the information of the current frame. And we propose
a feature correction module (FCM) to complete such feature
rectification. Specifically, we consider two key goals of video
semantic segmentation: high segmentation accuracy and low
computation cost. To compromise two goals, we particularly
propose to utilize the predicted distortion map to guide the
feature correction. In FCM, we utilize the distortion map in
two folds, as shown in Fig. 8.

First, it is used to guide the extraction of correction cues
from the current frame. Here it is expected that the correction
cue can produce accurate segmentation results over distorted
regions and meanwhile the used network is lightweight enough
for efficient computation. To this end, we propose CFNet in
this work that mainly consists of ten convolutional layers inter-
laced with batchnorm and LReLU layers for feature encoding
and four deconvolutional layers interlaced with LReLU layer
for feature decoding. Then we use the distortion map to
weight the CrossEntropy loss when training CFNet, namely,
distortion-guide feature learning (DGFL) is constructed. The
loss function is

L DG F L = − 1

H W

∑

h∈H,w∈W

M D
t (h, w) log pCC

t (h, w), (3)

where M D
t is the distortion map and pCC

t is the predicted
probability towards the ground truth from fCC

t . Through such
loss weighting, CFNet would pay more attention on the dis-
torted regions than others, and a lightweight model is enough
to effectively extract discriminative features.

Second, the distortion map is used to determine how to
rectify the propagated feature. Let f P

t denote the propagated
feature from the key frame to the current frame Ft , fCC

t be the
extracted correction cue, and fC

t be the corrected feature. FCM
adopts the weighted sum to perform the feature correction,

Fig. 8. Illustration of feature correction module (FCM). Here the predicted
distortion map M D

t is used in two folds. First, it guides the training of the
network to extract correction cues from the current frame by weighting the
loss of different regions. Second, it determines how to fuse the propagated
feature f P

t and extracted correction cue fCC
t to get the corrected feature fC

t .
Best viewed in color.

Fig. 9. Illustration of training strategy. We propose dual deep supervi-
sion (DDS) to improve the training of the network. Here L P and LC denote
the loss calculated for feature propagation and correction, respectively. Best
viewed in color.

in which the features on the distorted regions are mainly
rectified, namely, distortion-guided feature correction (DGFC)
is constructed. Then we have

fC
t = f P

t � (1 − M D
t ) + fCC

t � M D
t , (4)

where � represents the spatially element-wise multiplication.
It can be seen that the features on the distorted regions are
dominated by the correction cue fCC

t while the features on
other regions are dominated by the propagated features f P

t .

D. Training Strategy

Here we explain the training strategy of our proposed
method, which is illustrated in Fig. 9. Before elaborating on
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the details, we briefly introduce the training procedure [8]
widely used in previous works. For video semantic segmen-
tation, let (F1, F3, GT) denote one training sample, where
F1 and F3 are the key frame and current frame respectively,
and GT is the segmentation ground truth of F3. During
training, F1 is fed into the image segmentation model to extract
features, and meanwhile the optical flow between F1 and F3
is estimated with FlowNet. Then the extracted features are
propagated to F3, and the CrossEntropy loss at F3 is calculated
to train networks. In practice, F1 is randomly selected from a
10 frames video clip and F3 is always the last one with ground
truth, which can enrich the diversity of training samples.

However, the above training procedure may be unstable
due to inaccuracy of optical flow estimation, especially for
long-distance propagation (e.g., larger than 5 frames). In this
work, we propose dual deep supervision (DDS) to improve
network training by providing more supervision. Specifically,
we add an intermediate frame for each training sample,
denoted by F2, to reduce the propagation distance, and
meanwhile impose the supervision signal on F2. Note that
our method propagates the features frame-by-frame in the
inference phase, and thus two-warp operation in the training
phase is more appropriate than the original one.

In our experiments, F2 is randomly selected to ensure the
diversity of training samples. To be specific, we extract the
features of F1, and conduct feature propagation twice (F1 →
F2 → F3). Then we produce the pseudo label of F2 using
the image segmentation model for more supervision. Actually,
using the pseudo label has been a natural and popular way to
improve the segmentation quality in domain adaptation [66]
and semi-supervised learning [67]. Finally, we use the gen-
erated pseudo label and ground truth to supervise both the
feature propagation and correction procedures on F2 and F3,
as shown in Fig. 9. In particular, the propagation loss L P

works on the warped features f P
t for improving the quality of

optical flow, and the correction loss LC works on the rectified
features fC

t for enhancing the ability of feature correction. The
two losses can be written as:

L P = − 1

H W

∑

h∈H,w∈W

log pP
t (h, w), (5)

LC = − 1

H W

∑

h∈H,w∈W

log pC
t (h, w), (6)

where pP
t and pC

t are the predicted probability towards the
ground truth from f P

t and fC
t , respectively. Taking the loss of

feature learning in FCM L DG F L , our final loss for one single
frame is

L = (L P + LC + L DG F L)/3. (7)

Our method consists of four main components, i.e., Netseg ,
FlowNet, DMNet, and CFNet. Here we explain how they are
trained. Netseg is pretrained on ImageNet and then finetuned
on a particular segmentation dataset (e.g., Cityscapes, CamVid,
and UAVid). DMNet is trained with the generated ground-truth
distortion maps. Netseg and DMNet would keep fixed in the
following training procedure. FlowNet is pretrained on the
synthetic Flying Chairs dataset [12] and then jointly trained

with the randomly initialized CFNet by following the proposed
DDS training strategy. For each step of training, we adopt the
Adam optimizer [68] with β1 = 0.9 and β2 = 0.99. The
learning rate is set to 10−4 for the first 50 epochs and then
fixed to 10−5 for the rest 50 epochs.

IV. EXPERIMENT

In this section, we experimentally evaluate our proposed
method on three challenging datasets, namely, Cityscapes [2],
CamVid [3], and UAVid [4], and compare it with some state-
of-the-art methods. We conduct all of the experiments on the
NVIDIA GTX 1080Ti GPUs.

A. Datasets

Cityscapes [2]: is a popular dataset in semantic segmenta-
tion and autonomous driving domain. It focuses on semantic
understanding of urban street scenes. The training and valida-
tion subsets contain 2, 975 and 500 video clips, respectively,
and each video clip contains 30 frames. The 20th frame in
each clip is annotated by pixel-level semantic labels with 19
categories.

CamVid [3]: also focuses on the semantic understanding of
urban street scenes, but it contains less data than Cityscapes.
It only has 701 color images with annotations of 11 semantic
classes. CamVid is divided into the trainval set with 468
samples and test set with 233 samples. All samples are
extracted from driving videos captured at daytime and dusk,
and have pixel-level semantic annotations. Each CamVid video
contains 3, 600 to 11, 000 frames at a resolution of 720×960.

UAVid [4]: is a high-resolution Unmanned Aerial Vehi-
cle (UAV) semantic segmentation dataset, which brings new
challenges, including large scale variation, moving object
recognition and temporal consistency preservation. The train-
ing and validation subsets contain 20 and 7 video clips,
respectively, and each video clip contains 900 frames at a
resolution of 2160 × 3840. Every 100 frames in each clip are
annotated by pixel-level semantic labels with 8 categories.

B. Evaluation Metrics

We experimentally evaluate different video semantic seg-
mentation methods by measuring the segmentation accuracy
and computational efficiency.

For segmentation accuracy, we propose to use propagation
distance vs. accuracy curve (PDA Curve), which indicates how
the segmentation accuracy changes along different propagation
distances. Some previous works [8], [11] use the average accu-
racy among different propagation distances, which is inconve-
nient to figure out the actual performance. For computational
efficiency, we propose to use computation cost vs. accuracy
curve (CCA Curve). CCA Curve is an important metric for
model deployment, which indicates how the segmentation
accuracy changes along different average computation cost.
Note that the PDA and CCA represent similar information
on the segmentation performance since different computation
costs are actually obtained by setting different propagation
distances.
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TABLE I

CALCULATION OF FLOPS FOR DIFFERENT OPERATORS. Hi , Wi , AND Ci
ARE THE HEIGHT, WIDTH, AND CHANNEL OF THE INPUT FEATURE

MAP, AND Ho, Wo , AND Co CORRESPOND TO THE OUTPUT FEA-
TURE MAP. Kh AND Kw REPRESENT THE SIZE OF CONVOLU-

TIONAL KERNEL

Fig. 10. Performance comparison of different methods on Cityscapes
val subset with CCA Curve. Here � denotes the results of per-frame image
segmentation model. In particular, ”DeeplabFast*” represents the segmenta-
tion model used in DVSNet, which processes the regions of frame multiple
times and thus has higher computation cost. Best viewed in color.

In the experiments on Cityscapes, we set the 11th to 19th
frames as the key frame candidates, and propagate the feature
of the selected key frame to the annotated 20th frame, which is
used to measure the segmentation accuracy for each video clip.
That is, the propagation distance (denoted by DP ) ranges from
1 to 9 for plotting the PDA Curve. When plotting the CCA
Curve, we first calculate the computation cost of components
used on the key frames (i.e., Netseg) and non-key frames
(i.e., FlowNet, CFNet, and DMNet), which are denoted by
Cseg and Cwarp , respectively. The average computation cost
is calculated by

Cmean = (Cseg + Cwarp ∗ DP )/(DP + 1). (8)

The evaluation on CamVid and UAVid is similar to Cityscapes.
Here the mean intersection over union (mIoU) is adopted to
measure the segmentation accuracy, and floating point oper-
ations (FLOPs) is used for the computation cost. Following
common practices [69], [70], we calculate the FLOPs of
convolutional layer, batch normalization layer, activation layer,
and bilinear upsampling operator, of which the formulas are
provided in Table I.

C. Performance Comparison

We compare our proposed method with recent state-
of-the-art methods, including DFF [8], DVSNet [9], and
Accel [11], and the CCA Curve is used for evaluation.
Considering the baseline methods only provide the model

Fig. 11. Performance evaluation on Cityscapes val subset with PDA
Curve. All methods are equipped with Deeplabv3+ as the backbone of
segmentation network for fair comparison. The colorbar represents the compu-
tation cost of different methods for the propagation distance DP = 5, in which
lighter color indicates higher computation cost. Best viewed in color.

Fig. 12. Performance evaluation on CamVid with PDA Curve. All
methods are equipped with Deeplabv3+ as the backbone of segmentation
network for fair comparison. The colorbar represents the computation cost
of different methods for the propagation distance DP = 5, in which lighter
color indicates higher computation cost. Best viewed in color.

on Cityscapes, here we only give the results on Cityscapes
for fair comparison (the results on other datasets using our
implementation will be presented in ablation study). To be
specific, DFF and DVSNet use the same network DeeplabFast
as the segmentation backbone. But DVSNet splits the input
frames into four overlapped regions to perform multiple times
of segmentation, which is obviously more time-consuming.
As for Accel, Deeplab with deformable ResNet-101 is used
for image segmentation, and multiple versions of ResNets
with different depths are adopted to process the current
frame. Fig. 10 shows the results of different methods on
Cityscapes val subset. It can be seen that our proposed method
significantly outperforms other method in both accuracy and
efficiency.

D. Ablation Study

1) Effectiveness of Our Method: Here we verify the effec-
tiveness of our method on Cityscapes, CamVid, and UAVid,
and the results are shown in Fig. 11, Fig. 12, and Fig. 13,
respectively. For fair comparison, we reimplement the baseline
methods with DeepLabv3+ as the backbone of segmentation
networks and same FlowNet as in our proposed method.
In particular, our implemented DeepLabv3+ achieves a mIoU
score of 76.61% on Cityscapes, 72.46% on CamVid, and
69.30% on UAVid for per-frame image segmentation. From
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Fig. 13. Performance evaluation on UAVid with PDA Curve. All methods
are equipped with Deeplabv3+ as the backbone of segmentation network for
fair comparison. The colorbar represents the computation cost of different
methods for the propagation distance DP = 5, in which lighter color indicates
higher computation cost. Best viewed in color.

Fig. 14. The predicted distortion maps using different features. It can
be seen that the higher-level feature can get better distortion maps.

the results, it can be seen that our proposed method signif-
icantly outperforms other state-of-the-art methods, especially
for long-distance feature propagation.

Besides, we calculate the average computation cost by fixing
the propagation distance as 5 for all methods. The results
are shown in Fig. 11, Fig. 12, and Fig. 13 with color bars,
in which lighter color represents higher computation cost. Note
that the computation cost of Accel34 is higher than that of
Accel 50 because an extra deconvolutional layer is involved
in Accel34 for feature upsampling. Each component in our
proposed framework has a complexity of O(H W ), where H
and W are height and width of the input images. Moreover,
we analyze the computation cost of the main components
and overall framework for key and non-key frames, and the
statistics are provided in Table II. Note that the computation
cost for key frames is that of the image segmentation model.
It can be seen that the image segmentation network dominates
the computation cost. As shown in Fig. 11, Fig. 12, and
Fig. 13, our method has slightly higher computation cost than
DFF and DVSNet, but gets significant accuracy improvement.

Actually, the key of the proposed method getting accu-
racy improvement and efficient computation is our designed
distortion-aware mechanism. Benefited from such a design,
both the feature extraction from current frames and feature
correction can be completed by a lightweight network (e.g.,

Fig. 15. Comparison of different data to predict distortion maps. Here
the segmentation accuracy on Cityscapes val subset is adopted for evaluation.
It can be seen that higher-level feature can generate higher-quality distortion
maps but would involve higher computation cost. Best viewed in color.

TABLE II

COMPUTATION COST OF DIFFERENT MODULES (GFLOPS). THE RESOLU-
TION OF INPUT IMAGES IS 1024 × 2048 ON CITYSCAPES, 720 × 960 ON

CAMVID, AND 2160 × 3840 ON UAVID

TABLE III

EFFECT OF DIFFERENT COMPONENTS IN OUR METHOD ON CITYSCAPES
VAL SUBSET. ”MIOU” IS USED AS THE METRIC

DMNet and CFNet) due to only handling part of an image.
Moreover, only correcting features in distorted regions can
effectively avoid false correction and further boost segmenta-
tion accuracy. Therefore, our method can outperform state-of-
the-art methods in terms of accuracy and computation cost.

It is notable that our method can yield higher segmentation
accuracy than per-frame image segmentation for short-distance
feature propagation. It is because our proposed feature propa-
gation can well exploit the information from multiple frames.
That is, the segmentation of the current frame would benefit
from the feature combination of the previous and current
frames.

2) Effect of Different Components: Here we investigate the
contribution of each proposed component to the segmentation
performance by removing them (i.e., DDS, DGFL, and DGFC)
one by one. Table III gives the results, in which the propa-
gation distances {1, 5, 9} are particularly used and the mean
segmentation accuracy over all distances is also provided.
From the results, we have the following observations. (1) DDS
can improve the network training of our proposed method and
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Fig. 16. Visualization of some samples from Cityscapes. It can be seen that the predicted distortion map can represent the distortion pattern of propagated
features, and our proposed method can effectively correct the distorted features. Red rectangles highlight the main distorted regions. Best viewed in color.

TABLE IV

UPPER BOUND ANALYSIS OF DIFFERENT METHODS ON CITYSCAPES VAL

SUBSET. MIOU IS USED AS THE METRIC. * DENOTES THE UPPER

BOUND, AND ↑ REPRESENTS THE CORRESPONDING GAP

further bring accuracy increase, as shown in the first two rows.
(2) FCM is the main source of performance gains, especially
for long-distance feature propagation that usually would cause
serious distortion. (3) DGFL and DGFC in FCM are both
important. In particular, CFNet without DGFL cannot effec-
tively extract the correction cues, and without DGFC, the false
correction would become severe, especially for short-distance
propagation. Considering these results, it is convinced that
our proposed distortion-aware feature correction is very effec-
tive for boosting the performance of propagation-based video
semantic segmentation.

3) Upper Bound Analysis: Similar to our proposed method,
DFF [8] and Accel [8] also rectify the propagated features.
Here we explore the upper bound of segmentation accuracy of
these methods, in which only the wrongly predicted regions
are rectified during inference (the ground truth of semantic
segmentation is used). Table IV shows the results. It can be
seen that DFF and Accel have a larger gap corresponding to
their upper bounds while our method can achieve a smaller
one. Such results imply that our method can effectively alle-
viate false correction with our proposed distortion prediction.

4) Design of Distortion Map Prediction: In this work,
we propose to predict the distortion maps using images rather

than features in order to achieve low computation cost. Here
we compare different data to predict distortion maps regardless
of the computational price. In particular, we take the propa-
gated features after classifier (high-level feature) and features
after entry flow block2 in DeepLabv3+ (low-level feature)
as the inputs of DMNet. Besides, we use the ground truth
of distortion maps to test the upper bound of segmentation
performance, which can well demonstrate the effectiveness
of our idea to exploit the distortion map in video semantic
segmentation.

Fig. 14 provides the visual comparison of predicted distor-
tion maps for different features, and Fig. 15 gives the corre-
sponding segmentation performance. We have the following
observations. First, the higher-level feature can bring higher
segmentation accuracy for getting more consistent distortion
maps with the ground truth, but would involve higher compu-
tation cost. Thus we need to find a good trade-off between the
segmentation accuracy and computation cost. Second, from the
results in Table III and Fig. 15, it can be seen that our proposed
method can get significant performance improvement if the
ground truths of distortion maps are used, which shows the
rationality of focusing on the distortion regions in this work.

5) Visualization: To intuitively illustrate our proposed
method, we provide the visualizations of four samples from the
Cityscapes datasets in Fig. 16, where the intermediate features
are demonstrated by applying the segmentation head to them.
For each sample, we extract the feature from the key frame,
and then propagate it to the current frame (the 9th one from the
key frame). First, we can see that the predicted distortion maps
can represent the distorted regions of propagated features.
Second, under the guidance of distortion maps, our proposed
method can accurately extract the correction cues, especially
on the distorted regions, and then effectively correct the
propagated features.

V. CONCLUSION

We present a novel video semantic segmentation method
in this article, aiming at achieving high segmentation accu-
racy and competitive real-time performance simultaneously
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by tackling the feature distortion problem in propagation.
Specifically, we propose DMNet to predict distorted regions of
the propagated features, and then propose FCM to correct the
distorted features with a lightweight model. Our experimental
results on Cityscapes, CamVid, and UAVid show that the
proposed method outperforms the state-of-the-art methods in
both precision and speed.
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