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Abstract: Deep reinforcement learning (DRL) has significantly advanced online path
planning for unmanned aerial vehicles (UAVs). Nonetheless, DRL-based methods often
encounter reduced performance when dealing with unfamiliar scenarios. This decline is
mainly caused by the presence of non-causal and domain-specific elements within visual
representations, which negatively impact the learning of policies. Present techniques gener-
ally depend on predefined augmentation or regularization methods intended to direct the
model toward identifying causal and domain-invariant components, thereby enhancing the
model’s ability to generalize. However, these manually crafted approaches are intrinsically
constrained in their coverage and do not consider the entire spectrum of possible scenarios,
resulting in less effective performance in new environments. Unlike prior studies, this work
prioritizes representation learning and presents a novel method for causal representation
disentanglement. The approach successfully distinguishes between causal and non-causal
elements in visual data. By concentrating on causal aspects during the policy learning
phase, the impact of non-causal factors is minimized, thereby improving the generalizabil-
ity of DRL models. Experimental results demonstrate that our technique achieves reliable
navigation and effective collision avoidance in unseen scenarios, surpassing state-of-the-art
deep reinforcement learning algorithms.

Keywords: deep reinforcement learning; unmanned aerial vehicles; generalization capability;
policy learning; causal representation disentanglement

1. Introduction
Unmanned aerial vehicle (UAV) navigation technology has made notable strides,

leading to increased focus from experts in robotics and artificial intelligence. UAVs provide
versatile, economical, and efficient solutions for a range of applications. These applications
include precision agriculture [1,2], search and rescue operations [3,4], and wildlife conser-
vation [5]. Reliable collision avoidance systems are essential for effective teamwork among
multiple UAVs, enabling each UAV to determine the most efficient route from origin to
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destination while avoiding obstacles. Consequently, UAV collision avoidance remains a
critical challenge and a key research focus.

Traditional UAV collision avoidance methods, such as centralized strategies [6], rely
on ground-based control stations to interact with all UAVs, accessing detailed information
and issuing directives. However, this reliance on communication limits their applicability
in complex scenarios [7]. Decentralized frameworks have been developed to enable UAVs
to independently determine optimal trajectories using onboard sensors [8]. While these
methods represent significant advancements, they often depend on predefined models and
parameters, which can limit adaptability to new environments.

Recent progress in image processing and deep learning has positioned deep reinforce-
ment learning (DRL) as a highly promising approach for UAV navigation [9–11]. DRL
utilizes deep neural networks to handle high-dimensional inputs, such as images, enabling
seamless learning from raw data directly to policy decisions. This approach reduces the
need for manual feature extraction [12], thereby increasing the efficiency and effectiveness
of UAV navigation systems.

In a manner akin to advanced neural network techniques, deep reinforcement learning
relies heavily on data. It operates under the assumption that both training and evalua-
tion datasets are independently and identically distributed (IID). However, this premise
frequently proves unrealistic in practical applications. For example, a UAV system based
on DRL trained within a controlled environment might later be deployed in diverse and
unforeseen settings, such as forests or mountainous terrains, where conditions can differ
vastly.

In order to explore the difficulties associated with the adaptability of DRL in novel
environments, we re-examine the seminal work on UAV obstacle avoidance using DRL,
with a focus on SAC + RAE [12]. In our study, the SAC + RAE model was trained in
a particular environment (e.g., playground), and its ability to generalize was assessed
through testing across a variety of distinct environments. As depicted in Figure 1, the
model showed promising results when evaluated in the same playground setting.

Figure 1. An illustration of a generalization capacity assessment. In the presence of novel situations,
the existing DRL approach experiences significant declines in navigation success rates.

Nonetheless, its performance noticeably declined in previously unseen scenarios
(e.g., snowy mountain, valley, and forest), with larger disparities between training and
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testing environments leading to poorer outcomes. These observations clearly highlight a
generalization issue inherent to existing DRL-based approaches.

A key factor for the widespread adoption of UAV technologies is the creation of colli-
sion avoidance systems that can seamlessly adjust to unfamiliar environments. Efforts to
enhance the generalization capabilities of DRL models in this context can be broadly classi-
fied into two main strategies: augmentation-based [13–15] and regularization-based [16–19]
approaches. Augmentation-based techniques focus on modifying the training environments
using image augmentation methods such as adding noise, color jittering, and blurring to
help the DRL model adapt to environmental changes during deployment. On the other
hand, regularization-based methods impose constraints during model training—such as
encouraging sparsity or smoothness in model weights—to boost generalization and re-
duce overfitting. However, these manually crafted strategies are inherently limited in
their breadth and fail to comprehensively address the wide array of potential deployment
environments, resulting in suboptimal performance when applied to unseen settings.

To address the challenge of model generalization across different environments, we
conducted a comprehensive analysis of the SAC + RAE architecture. Our analysis revealed
that the limited generalization capabilities of DRL algorithms may be attributed to unstable
and unreliable visual representations, such as fluctuating feature activations and inconsis-
tent image encodings. SAC + RAE employs a regularized auto-encoder (RAE) [20] to derive
visual features from images captured via UAVs. However, it includes all visual elements,
regardless of their importance to collision avoidance. Irrelevant background characteristics
unique to the training setting may lead to misleading associations between sensory inputs
and the actions they trigger. These unintended links can undermine the task’s integrity by
causing the model to rely on extraneous environmental cues, rather than focusing on the
pertinent aspects of the task itself [21–23].

Visual representations often include task-irrelevant factors that can hinder policy
learning, making the generalization capability of DRL dependent on identifying and
removing these factors. Causal representation learning [24,25] offers a viable solution by
distinguishing and isolating causal factors essential for UAV navigation. Causal factors
provide meaningful information necessary for navigation tasks, enabling DRL models to
understand underlying causal structures across diverse scenarios and thereby enhance
their ability to generalize to unseen data and environments.

In this study, we initiate the construction of an SCM to delineate the causal relation-
ships essential to representation learning, as depicted in Figure 2. We hypothesize that
only the causal factors S (e.g., obstacle features) impact the representation learning process.
We introduce the causal representation disentanglement (CRD) approach to effectively
pinpoint and separate non-causal factors, such as background features. In particular, we
design a background intervention component that introduces modifications to background
features and leverages multiple supervisory signals, including consistency loss and task-
specific loss, to disentangle sub-features. This method enables the distinction between
causal and non-causal factors, which enhances task efficiency. Subsequently, only the causal
sub-features are utilized in policy learning, while non-causal factors are explicitly excluded,
markedly enhancing the generalization ability of DRL in unfamiliar scenarios. Additionally,
we designed a simulation environment to assess the collision avoidance capabilities of
UAVs. The training and testing scenarios are distinct, allowing for an effective evaluation
of the generalization capabilities of DRL models. Comprehensive experiments demonstrate
the superiority and efficacy of our proposed approach, thereby strongly supporting the
continued development and implementation of UAV systems.
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Figure 2. The process of representation learning involves the use of a structural causal model (SCM).In
the context of representation learning, an SCM is utilized. An image, denoted as X, consists of causal
elements S, which include both domain-invariant causal factors S1 and domain-specific causal factors
S2, as well as non-causal elements U. However, it is solely the causal elements S that influence the
representation learning process.

The contributions of our work are summarized as follows:

• We are the first to address the generalization issues in UAV collision avoidance systems
that utilize DRL by adopting a causality-based perspective.

• We develop a framework for disentangling causal representations, which promotes
the creation of robust and causally grounded visual features. Our approach signifi-
cantly enhances the generalization capability of DRL models in new environments by
intentionally eliminating non-causal factors.

• We carry out extensive experiments and thorough analyses on tasks involving collision
avoidance among multiple UAVs. These evaluations confirm the superior performance
and effectiveness of our proposed methodology.

2. Related Work
2.1. UAV Collision Avoidance

Traditional UAV obstacle avoidance methods can be broadly categorized into three
types: geometric-based methods [26–28], optimization-based methods [29,30], and sensor-
based methods [31,32]. Geometric-based methods achieve obstacle avoidance by analyzing
the geometric relationships between UAVs and obstacles. For example, Goss et al. [26]
employed a mixed geometric and collision cone approach to resolve conflicts or colli-
sions between two aircraft in a 3D environment using current positions and velocities.
Seo et al. [27] extended the collision cone method to allow UAV swarms to avoid obstacles.
Lin et al. [28] proposed an efficient 3D collision avoidance algorithm that combines geo-
metric avoidance with the selection of critical avoidance start times to quickly navigate
multiple obstacles. Optimization-based methods plan optimal obstacle avoidance paths
using geographic information and probabilistic search techniques to improve efficiency.
Pérez-Carabaza et al. [29] introduced a minimum time search (MTS) planner based on ant
colony optimization, which optimizes UAV search trajectories while considering communi-
cation and collision avoidance constraints. Biswas et al. [30] developed a path planning
method based on particle swarm optimization for autonomous systems in dynamic en-
vironments. Sensor-based methods use onboard sensors to detect and avoid obstacles,
enabling rapid response and path adjustments for drones or robots in dynamic settings.
Zsedrovits et al. [31] proposed a visual aircraft detection algorithm for drones, effective un-
der both clear and cloudy conditions. Liang et al. [32] introduced a UAV obstacle avoidance
method composed of three modules: environmental perception, algorithmic avoidance,
and motion control, allowing for safe navigation in low-altitude complex environments.
However, geometric-based methods can suffer from high computational complexity in
intricate environments, which may impair real-time performance. Optimization-based
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methods, while effective in static environments, require detailed environmental information
and pre-planning, limiting their adaptability to dynamic changes. Sensor-based methods,
though flexible and free from pre-planning, may get stuck in local minima in complex
environments, necessitating integration with more efficient path planning algorithms to
ensure the UAVs reach their target.

Deep reinforcement learning (DRL) methods have achieved considerable success in
multi-agent collision avoidance by formulating decision-making strategies directly from
sensory inputs, thereby eliminating the need for prior information. Within the established
framework, Qie et al. [33] employed the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm to address challenges associated with planning trajectories and
allocating targets for multiple unmanned aerial vehicles. Additionally, Xue et al. [34] pre-
sented the Multi-Agent Recursive Deterministic Policy Gradient (MARDPG) method. This
approach extends deep deterministic policy gradients to effectively manage multiple UAVs.
This advancement further demonstrates the effectiveness of deep learning techniques in
solving complex navigation challenges. In addition, Fei and associates [35] introduced an
enhanced deep reinforcement learning model named FRDDM-DQN. This model combines
Faster R-CNN with a data storage system, enabling UAVs to autonomously navigate and
avoid collisions even in environments lacking radar and experiencing communication
disruptions. Similarly, Huang et al. [12] created a vision-based, decentralized strategy for
collision avoidance using deep reinforcement learning. This strategy facilitates scalable
and resilient path planning without the need for communication, representing the inau-
gural application of this functionality in systems involving multiple UAVs. Nevertheless,
current DRL methodologies frequently encounter difficulties in accurately representing
essential task-specific features due to inherent limitations in feature representation. This
shortfall consequently hampers the ability of these models to generalize effectively across
different scenarios.

2.2. Robust Representation Learning

The endeavor to create robust feature representations is a dynamic research domain
within computer vision and machine learning. By aiming to comprehend and depict
essential explanatory factors within an efficient framework, feature disentanglement strives
to establish a cohesive latent feature space. Within this hidden space, specific dimensional
features are crafted to encode distinct semantic features [36].

Additionally, Liu et al. [37] introduced the Unified Feature Disentanglement Network
(UFDN), utilizing adversarial training techniques to ensure uniform feature representations
across various source domains. Conversely, Peng et al. [38] developed the Deep Adversar-
ial Disentanglement Auto-Encoder (DADA), an innovative model capable of effectively
separating features using a single source domain in conjunction with multiple unannotated
target domains.

Nevertheless, these approaches primarily focus on surface-level associations and
neglect to examine underlying causal links, thereby compromising their reliability. Ad-
dressing this drawback, Cai et al. [39] developed a method that divides features into
mutable and stable components through the use of a VAE. Furthermore, Kong et al. [40]
tackled the problem by focusing on data generation models, emphasizing the importance
of maintaining minimal alterations in causal mechanisms across various domains. Their
study demonstrated that latent variables attain partial identifiability under the fulfillment
of specific conditions. These prerequisites involve having an adequate number of domains,
subjecting latent variables to monotonic transformations, and guaranteeing a homogenous
distribution of labels. Simultaneously, Li et al. [25] attained the full identifiability of latent
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variables by employing causal generative processes while relying on fewer assumptions
related to domains.

Motivated by these studies, we tackle the generalization challenge in UAV collision
avoidance based on DRL through the development of a causal representation disentangle-
ment method. This method systematically eliminates non-causal elements from visual data,
thereby improving the model’s capacity to generalize effectively to novel environments.

3. Approach
3.1. System Model and Problem Formulation

Our method builds on the foundation established by SAC + RAE [12]. It integrates cen-
tralized training with a distributed execution framework to improve policy optimization. In
multi-UAV collision avoidance, each drone operates autonomously. It relies exclusively on
its onboard sensors—a forward-facing camera and an inertial measurement unit (IMU)—to
navigate and avoid obstacles. This configuration leads to a partially observable environ-
ment. We formally define this scenario as a decentralized, partially observable Markov
decision process (Dec-POMDP).

3.1.1. Observation Space

Every drone collects data composed of three unique elements: the encoded depth
image, ot, determine the target’s specific location based on the coordinate system established
by the UAV itself, og, and the UAV’s flight speed, ov.

3.1.2. Action Space

We use a continuous action space framework to improve UAV flight stability and
flexibility. The action vector a is generated by the policy network π(s) and is defined as
a = [vcmd

x , vcmd
z , vcmd

ω ]. Based on this:

• vcmd
x specifies the UAV’s forward velocity along its longitudinal axis.

• vcmd
z indicates the vertical ascent rate, representing either upward or downward

movement.
• vcmd

ω control the rotational speed to manage the UAV’s turning.

3.1.3. Overview of AirSim’s UAV Control System Architecture

The experiments in this study were based on AirSim’s UAV control system architecture,
which employs a modular design to facilitate an efficient and flexible control process [41].

The action vector a = [vcmd
x , vcmd

z , ωcmd] is generated via the policy network π(s),
where each component is influenced by the forces generated via the rotors, as depicted in
Figure 3.

The UAV model in AirSim is grounded in classical quadrotor dynamics, described by
the following equations: m · dv

dt = F−m · g
I · dω

dt = τ
(1)

where m represents the mass of the UAV, v is the velocity vector, F denotes the total external
force acting on the UAV, g is the gravitational acceleration vector, I is the inertia matrix, ω

is the angular velocity vector, and τ is the total external torque.
The control of the UAV’s attitude and position is executed using the built-in

proportional–integral–derivative (PID) controller in AirSim. The PID coefficients used
in our simulations are summarized in Table 1, and the UAV specifications are listed in
Table 2.
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Figure 3. The quadrotor model is depicted with four vertices, each experiencing a control input, u1.
This input drives the rotational speed of the propellers, resulting in a force, F1, and a torque, τ1.

Through this control mechanism, the UAV can achieve stable and precise flight oper-
ations. The PID controller modulates the UAV’s actuators (e.g., motor speeds) based on
these computations, ensuring the precise and stable execution of velocity commands.

This architectural design effectively decouples high-level path planning and obstacle
avoidance algorithms from low-level dynamics and control logic. The policy network is
tasked with generating efficient velocity commands, while the physical engine and PID
controller in AirSim manage the specific dynamic responses and control execution. This
design not only simplifies the control process but also enhances the system’s adaptability
and real-time responsiveness across diverse environments.

The architecture supports the system’s ability to maintain high levels of stability
and reliability in dynamic environments while also accommodating the expansion and
adaptation of UAVs in various deployment scenarios.

Table 1. PID coefficients for different control modes.

Controller Type KP KI KD

Linear-velocity PID controller 0.2 2.0 0.0
Angular-velocity PID controller 0.25 0.0 0.0

Table 2. UAV specifications.

Specification Value

Mass 0.8 kg
Rotor count 4

Minimum motor output 0
Maximum motor output 1

Minimum angling throttle 0.05
Maximum angular rate 2.5 rad/s

Body box dimensions (m) 0.2413 × 0.1143 × 0.0762

3.1.4. Reward Function

The careful selection of a reward function is essential for providing meaningful and
constructive feedback to each agent within the system. Our proposed reward structure
consists of two fundamental components:
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• rg: This component guides the UAV toward its specified target. By incentivizing
movement in the direction of the intended objective, rg ensures that each UAV steadily
progresses toward reaching its designated location.

• rc: This element encourages the UAV to steer clear of obstacles. By penalizing inter-
actions with potential hazards, rc promotes safer navigation, thereby reducing the
likelihood of collisions.

Together, these two rewards establish a balanced framework that simultaneously ad-
vances the UAVs toward their goals while ensuring safe operation within their environment.

r = rg + rc (2)

rg =

rarrival , if dt < 0.5

αgoal · (dt − dt−1), otherwise
(3)

where dt between the unmanned aerial vehicle and the target at the time t.

rc =

rcollision, if crashed

αavoid ·max(dsa f e − dmin, 0), otherwise
(4)

During the training phase, we assign the following values: rarrival = 50, rcollision = −10,
αgoal = 3, αavoid = −0.05, and dsafe = 5.

3.2. Overview

Building upon the foundational work presented by SAC + RAE [12], our approach
conducts centralized training with multiple UAVs and performs distributed execution
during testing to optimize our policy, as illustrated in Figure 4.

Figure 4. The architecture of our UAV collision avoidance framework.Our framework is founded on
the SAC framework, which processes inputs including depth images, the UAV’s current speed, and
the relative position of the target goal. Based on these inputs, it generates the necessary flight control
commands. To improve the extraction of visual features, we introduce a method for disentangling
causal representations. This approach detects and separates the essential causal elements, ensuring
that only these components are forwarded to the next stage of policy learning.

In this work, our objective is to optimize the representation extraction process by
implementing causal representation disentanglement, which allows us to identify and
isolate hidden causal factors while eliminating task-irrelevant (non-causal) elements. This
strategy substantially improves the generalization ability of the deep reinforcement learning
(DRL) model.
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Inspired by previous research on feature disentanglement [25,40,42], we decompose
the extracted representations into three distinct categories:

• Task-irrelevant components, Z1 ∈ Rn1 ;
• Task-relevant but scenario-specific components, Z2 ∈ Rn2 ;
• Task-relevant and scenario-invariant components, Z3 ∈ Rn3 .

Specifically, Z2 (e.g., obstacle distribution) and Z3 (e.g., the distance between the drone
and an obstacle) serve as causal elements that supply crucial information for the collision
avoidance task. Conversely, Z1 (e.g., background patterns) is irrelevant to the task and
may foster misleading correlations during data-driven training, thereby impeding the
generalization of the UAV system in new environments. By employing the proposed causal
representation disentanglement method, we successfully isolate these three components.
We then transfer only Z2 and Z3 to the subsequent policy learning phase, effectively
eliminating the influence of Z1.

3.3. Causal Identifiability Analysis

In this part, we analyze the causal identifiability of the proposed causal latent model.
We begin by demonstrating that achieving identifiability for the proposed causal model is
unattainable without additional domain information. We then prove that incorporating
such domain information allows the identification of non-causal features from depth image
data. This proof of identifiability offers a solid theoretical foundation for our algorithm
design and ensures the rationality of the proposed method.

While the framework of autoencoders enables efficient learning of deep latent-variable
models, a common challenge is the lack of identifiability guarantees. Khemakhem et al. [43]
demonstrate that any model with an unconditional latent distribution is unidentifiable.
Specifically, they show, from the perspective of factor priors and nonlinear independent
component analysis (ICA), that without external variables, it may be impossible to recover
the true latent variables solely from observed data.

Similarly, in this paper, the absence of additional domain information results in causal
and non-causal features being equivalently represented in the observed depth image data,
making it difficult for autoencoders to differentiate between them. However, Tian et al. [44]
show that utilizing multiple source domains with varying data distributions can help
identify causal structures, as causal knowledge can be inferred from distributional changes.
Therefore, incorporating additional domain information is crucial for accurately identifying
non-causal features.

Following the SCM depicted in Figure 2, we adopt the subsequent assumptions:

• Continuous and strictly positive density: The latent variables are governed by a
probability density function that is both continuous and strictly greater than zero
across the domains Z, D, and Y. Formally, this condition is expressed as pz|d,y > 0
for all z ∈ Z, d ∈ D, and y ∈ Y. In this framework, Y denotes the label, which
encapsulates the impact of the reward function on the latent variables.

• Conditional independence: conditioned on d and y, each zi is independent of any
other zj for i, j ∈ {1, · · · , n}, i ̸= j, i.e., log pz|d,y(z|d, y) = ∑n

i=1 log pzi |d,y(zi|d, y).
• Linear independence: for any z ∈ Z, there exist n1 + n2 + 1 combinations of (d, y),

such that these n1 + n2 vectors v(z, dj, yc)− v(z, d0, y0) are linearly independent, where
vector v(z, d, y) is defined as follows:

v(z, dj, y) =

(
∂ log pz1|d,y(z1|d, y)

∂z1
, · · · ,

∂ log pzn |d,y(zn|d, y)
∂zn

)
(5)
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Through the modeling of the aforementioned assumptions, z1, z2, and z3 are
subspace-identifiable.

First, we construct an invertible transformation, h, between the ground-truth z and
estimated ẑ. Then, we consider changes in the domain and labels to construct a full-rank
system of linear equations, which has a unique solution, ∂zi

∂ẑj
= 0. Because the Jacobian

matrix of h is non-singular, for every zi, where i ∈ {1, · · · , n}, a corresponding hi exists,
such that zi = h(ẑi).

3.4. Causal Representation Disentanglement

Achieving causal representation disentanglement fundamentally involves directing
the representation elements, specifically Z1, Z2, and Z3, to acquire distinct semantic
concepts, as intended. The methodology of causal representation disentanglement
is depicted in Algorithm 1. In preceding successful research on feature disentangle-
ment [39,45], scholars frequently employed data from diverse sources to reveal invariant
underlying mechanisms to distinguish the causal representation components. Aligning
with these strategies, we implement a straightforward yet effective technique known as
background intervention to generate multi-domain data for this objective. Additionally,
we develop multiple critical loss criteria to facilitate and direct the separation of the
constituent representation components.

Algorithm 1 Causal representation disentanglement with training loop

Input: Image X, Encoder Eϕ, Decoder Dψ, Weights λalign, λ f orce, Learning rate η
Output: Causal representations Zcausal

1: Initialize parameters ϕ, ψ;
2: while not converged do
3: Z ← Eϕ(X)
4: Z1, Z2, Z3 ← Disentangle(Z)
5: Zcausal ← [Z2, Z3]
6: X̂ ← Dψ(Z)
7: Lrec ← ∥X− X̂∥2

8: Lalign ← Compute for Z3
9: L f orce ← Penalize Z1

10: L← Lrec + λalignLalign + λ f orceL f orce
11: ϕ← ϕ− η∇ϕL
12: ψ← ψ− η∇ψL
13: end while

3.4.1. Background Intervention

Our analytical experiment (Figure 1) and the developed structural causal model (SCM)
(Figure 2) reveal that non-causal elements, such as background patterns, can introduce
deceptive information that negatively affects the model’s ability to generalize to unfamiliar
scenarios within the collision avoidance framework. To facilitate the network in identifying
latent causal factors, we apply perturbations to these non-causal elements through the
implementation of a background intervention strategy, thereby enabling the generation
of multi-domain data. Specifically, we employ various commonly used data augmenta-
tion techniques, including the addition of random noise, motion blurring, and Gaussian
blurring, to carry out these interventions. It is important to highlight that these augmen-
tation methods exclusively alter background information, leaving task-related execution
unchanged. Consequently, it can be reasonably inferred that the introduced perturbations
are confined to non-causal components.
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3.4.2. Loss Function

As shown in Figure 5, we utilize VAE [46] to separate causal features from non-causal
features. The encoder uses q(z|x) to transform the input image into the latent representation
space Z, while the decoder q(x|z) reconstructs this learned representation back into an
image resembling the original input. Background intervention primarily perturbs Z1,
forcing the model to learn to encode background information solely in Z1 and thereby
achieving the decoupling of causal and non-causal features.

Figure 5. Causal representation disentanglement illustration. We utilize a variational auto-encoder to
extract features and subsequently design specialized loss functions that guide predefined components
to develop distinct semantic meanings. The term ‘Reparam’ denotes the reparameterization technique
used in this process.

Additionally, to ensure the accuracy of separating causal and non-causal features,
we designed multiple loss functions. First, we use a reconstruction loss to measure the
difference between the image generated via the decoder and the original input image.

Lvae = DKL[q(z|x)||p(z)]−Eq(z|x)[log q(x|z)] (6)

where p(z) denotes a prior probability distribution. To enhance the bottleneck’s network
architecture and amplify model diversity, we redesigned h:

Lrec = (h− hrec)
2 (7)

Viewed causally, the background disturbance process represents a causal intervention
on images [47], as shown in Figure 5. This intervention aids the model in learning how to
disentangle the causal factors within the images. Additionally, we developed an alignment
loss to ensure that perturbations to the non-causal representation Z1 do not affect the causal
representations Z2 and Z3, as detailed below:

LC =
1
C

C

∑
i=1
||z3 − zi

3,aug||2 (8)

where C indicates how many data augmentation techniques are employed, and zi
3,aug

signifies the features derived from the ith technique.
Additionally, to guarantee that causal elements are relevant to the task and provide

crucial information for policy learning, the sub-features o = [Z2, Z3] are forwarded to the
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next policy learning phase. As a result, the SAC model’s learning process can be generally
split into two main steps.

The initial phase encompasses assessing the policy, which seeks to precisely estimate
the Q-function:

LQ = E(o,o′ )∼q(z|x),(a,r)∼B

[(
Q(o, a)− r− γV̄(o

′
)
)2
]

(9)

During each iteration, a pair (o, o
′
) is obtained from the encoder q(z|x), and a tuple

(a, r) is retrieved from the replay buffer B.

V̄(o) = Ea∼πθ
[Q̄(o, a)− α log π(a|o)] (10)

where the objective Q-function is represented as Q̄.
The subsequent stage encompasses refining the policy, aiming to revise the model’s

strategy:
Lπ = Eo∼q(z|x)[DKL(π(·|o)∥Q(o, ·))] (11)

where Q(o, ·) ∝ exp
{

1
α Q(o, ·)

}
.

It is important to emphasize that only Z2 and Z3 are exclusively provided to the
reinforcement learning model, thereby nullifying the impact of Z1.

4. Experiment
4.1. Experimental Setup and Parameter Configuration

We constructed various simulation environments by integrating Unreal Engine (UE)
with the AirSim simulator [41]. These simulation experiments were conducted on a work-
station running Ubuntu 20.04, equipped with an Intel i9-13900K processor and an NVIDIA
GeForce RTX 4090 GPU. The hyperparameters employed in this study are thoroughly
outlined in Table 3. In addition, the specific details of our experiment can be found in the
video included in our Supplementary Materials.

Table 3. Hyperparameters for policy training.

Parameter Name Value

Batch size 128
Max episodes 300
Update times 400

Replay buffer B capacity 20,000
Discount γ 0.99

Encoder learning rate 10−4

Critic’s learning rate 10−4

Critic’s target update frequency 2
Critic’s Q-function soft-update rate τQ 0.01
Critic’s encoder soft-update rate τenc 0.05

Actor’s learning rate 10−4

Actor’s update frequency 2
Actor’s log stddev bounds [−10, 2]

Optimizer Adam
n1 8
n2 6
n3 42
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4.2. Performance Metrics and Experimental Scenarios
4.2.1. Performance Metrics

Following the methodology of SAC + RAE [12], we utilized the subsequent evaluation
metrics to gauge performance across diverse scenarios:

• Swarm success rate (SSR): The swarm success rate quantifies the fraction of trials
where the entire UAV fleet successfully reaches the designated target locations. This
metric is particularly significant in real-world applications necessitating coordinated
efforts among multiple UAVs, as a mission is typically deemed successful only when
every UAV accomplishes its respective objective.

• Individual success rate (ISR): The individual success rate assesses the proportion
of UAVs that attain their assigned target positions without encountering any colli-
sions within a defined time period. This metric highlights each UAV’s autonomous
performance and dependability throughout the mission.

• Success weighted by path length (SPL): This indicator assesses whether a UAV suc-
cessfully reaches its intended destination by following the most optimal route. It is
determined using the following formula:

SPL =
σ · l

max(l, p)
(12)

In this context, l signifies the shortest distance from the UAV’s starting location to the
target, p indicates the actual distance covered by the UAV, and σ is a binary variable
that shows whether the mission was successfully accomplished.

• Extra distance: This metric quantifies the average additional distance covered by UAVs
compared to the shortest possible path from their initial positions to their designated
targets. Both the mean and standard deviation are provided for this measurement.

• Average speed: This measure calculates the mean velocity of all UAVs during the
testing phase. As with extra distance, this metric also reports both the average and
standard deviation values.

4.2.2. Experimental Scenarios

To assess the generalization capabilities of DRL models, we developed two separate
scenarios. One scenario is used for training, while the other is utilized for evaluation, as
illustrated in Figure 6.

Figure 6. Scenarios for model training and evaluation. The model is trained using the playground
scenario, whereas the testing phase employs the forest scenario, which includes previously unseen
obstacles. To enhance clarity, both aerial viewpoints and first-person perspectives are provided. For
optimal viewing quality, zooming in is recommended.

The training environment is a playground without any obstacles. In each training
cycle, the starting and target positions for each drone are randomly assigned within a cubic
area that is 14 m long, 14 m wide, and 5 m high. This method aids drones in improving the
adaptability of their strategies across diverse environments, as they must navigate through
changing conditions.
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Conversely, for testing purposes—and taking into account practical UAV applications
such as geological surveys [48] and search and rescue missions [4]—we created a forested
setting that incorporates several previously unseen obstacles to test the DRL models’
capacity to generalize. Furthermore, during each testing phase, all drones are initially
positioned uniformly around a circle with a 16 m radius at a designated altitude, with
their target locations located on the opposite side of the circle. This commonly used
and more demanding testing approach more effectively validates the acquired collision
avoidance strategies.

4.3. Performance Comparison

In this work, we focus on improving the generalization capability of deep reinforce-
ment learning (DRL) models. As our baseline, we adopt the previously state-of-the-
art DRL-based method SAC + RAE [12], despite the existence of several traditional ap-
proaches [49,50], such as probabilistic and deterministic algorithms, which can also address
collision avoidance in multi-UAV scenarios. To evaluate our proposed CRD module, we
integrated it into the baseline model and compared its performance with other established
methods designed to address generalization issues. These include augmentation-based
approaches, such as AutoAugment [15] and DrAC [14], as well as regularization-based
techniques, including L1 norm [16,51] and L2 norm [17,52]. Additionally, we compared
our method with the latest CRL approach [53], which is specifically designed to improve
collision avoidance in multi-UAV scenarios.

For a fair comparison, we followed the official implementations of each method and
conducted uniform model training within predefined training scenarios. Specifically, all
methods were trained under identical simulation environments and parameter settings.
During training, we ensured that each method underwent sufficient iterations to achieve
convergence and optimal results. Finally, the trained models were evaluated in the same
testing scenarios to ensure consistency and fairness in the performance comparison.

The experimental results are summarized in Table 4. From the results, we can draw the
following observations. First, our proposed CRD demonstrates significant improvements in
both the navigation success rate and SPL metrics, confirming the superiority and efficiency
of our method. Second, although CRD results in a slightly longer planned flight path and
a slower speed, this is due to the UAVs performing more collision avoidance maneuvers,
which ultimately leads to a higher success rate.

Table 4. Performance comparison of various methods in the testing scenario with an unseen back-
ground and obstacles, using cycle pattern initialization.

Method SSR (%) ISR (%) SPL (%) Extra Distance (m) Average Speed (m/s)

SAC + RAE 29.6 87.7 82.2 10.591/4.443 0.457/0.090

+ AutoAugment [15] 53.4 90.6 82.7 3.192/0.840 0.854/0.154
+ DrAC [14] 50.0 88.7 77.4 4.712/1.547 1.026/0.190

+ L1 Norm [16,51] 69.6 92.9 84.2 2.459/0.855 0.870/0.107
+ L2 Norm [17,52] 58.4 93.1 79.8 4.410/1.522 0.912/0.113

+ CRL [53] 71.1 94.5 85.1 3.924/0.883 0.844/0.097

+ Our CRD 93.6 98.9 87.3 3.728/0.677 0.812/0.086

4.4. Ablation Study

In this subsection, we describe experiments performed to demonstrate the efficacy of
our proposed approach.
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4.4.1. Representation Components

The fundamental strategy to enhance generalization in our approach involves decom-
posing representations into three distinct components (i.e., Z1, Z2, and Z3) and exclusively
utilizing the task-relevant components (Z2 and Z3) for subsequent policy learning. This
methodology deliberately removes the influence of the task-irrelevant component (Z1).

To gain deeper insights into the role of each representation component, we performed
an ablation study examining various combinations of these components. As presented in
Table 5, two primary findings are evident.

Table 5. Ablation study on different combinations of representation components.

Z1 Z2 Z3 SSR (%) ISR (%)

✓ ✓ 93.6 98.9
✓ 8.9 71.6

✓ 6.4 67.3
✓ ✓ ✓ 11.7 78.4

Firstly, both Z2 and Z3 are essential for achieving optimal policy learning, and their
combined use results in the highest performance. Secondly, the inclusion of Z1 diminishes
generalization capabilities, as it encompasses task-irrelevant information that can readily
introduce spurious correlations, thereby causing erroneous action predictions.

4.4.2. Scalability

To evaluate the generalization and scalability of our method, we separately increased
the number of UAVs and obstacles during the testing phase. As illustrated in Table 6,
our proposed CRD consistently surpasses the baseline model (SAC + RAE) under various
conditions. These experimental findings indicate that our method effectively generalizes to
a diverse set of unseen scenarios, which is essential for real-world applications.

Table 6. Scalability analysis experiments. Comparisons were conducted under varying numbers of
UAVs and obstacles. ↑means an increase in percentage points.

Num
SAC + RAE + Our CRD

SSR (%) ISR (%) SSR (%) ISR (%)

Obstacle

4 29.6 87.7 93.6 ( ↑ 64.0) 98.9 (↑ 11.2)
6 22.4 82.6 89.6 (↑ 67.2) 97.6 (↑ 15.0)
8 18.4 80.6 87.0 (↑ 68.6) 96.8 (↑ 16.2)

10 16.6 78.9 80.0 (↑ 63.4) 95.7 (↑ 16.8)

UAV

8 29.6 87.7 93.6 (↑ 64.0) 98.9 (↑ 11.2)
10 20.0 84.0 91.8 (↑ 71.8) 93.6 (↑ 9.6)
12 11.8 82.4 89.6 (↑ 77.8) 91.0 (↑ 8.6)
14 2.5 80.6 85.4 (↑ 82.9) 88.2 (↑ 7.6)

4.4.3. More Evaluation Scenes

To further verify the generalization capability, we designed a variety of additional
scenes for evaluation, including a snowy mountain and valley, as shown in Figure 7. As
indicated in Table 7, our proposed CRD consistently improves performance across different
scenes, including both seen and unseen environments.
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Figure 7. More testing scenes. Illustration of extra testing scenes used in Table 7.

Table 7. Performance improvement under conditions with various scenes.

Scenes Seen/
Unseen Method SSR (%) ISR (%) SPL (%)

Extra
Distance

(m)

Average
Speed
(m/s)

Playground Seen
Baseline 87.5 96.4 81.4 6.156/3.449 0.527/0.099

+ Our CRD 100.0 ( ↑ 12.5) 100.0 (↑ 3.6) 87.8 (↑ 6.4) 4.458/0.302 0.852/0.038

Forest Unseen
Baseline 29.6 87.7 82.2 10.591/4.443 0.457/0.090

+ Our CRD 93.6 (↑ 64.0) 98.9 (↑ 11.2) 86.1 (↑ 3.9) 3.254/0.564 0.812/0.086

Snowy mountain Unseen
Baseline 65.1 92.8 72.3 9.236/2.927 0.504/0.068

+ Our CRD 99.2 (↑ 34.1) 99.8 (↑ 7.0) 88.5 (↑ 16.2) 3.629/0.309 0.967/0.061

Valley Unseen
Baseline 52.3 91.2 68.2 11.361/5.329 0.460/0.092

+ Our CRD 96.8 (↑ 44.5) 99.8 (↑ 8.7) 88.6 (↑ 20.4) 3.568/0.359 0.931/0.056

4.4.4. Other Disentanglement Techniques

The key component of our proposed method is a novel representation disentanglement
technique, developed from a causal perspective. To further showcase the effectiveness of
our approach, we compared its performance with existing representation disentanglement
methods, including β-VAE [54], Factor-VAE [55], and DAVA [56]. As shown in Table 8,
our proposed CRD outperforms these popular representation disentanglement techniques,
verifying its effectiveness.
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Table 8. Performance comparison with other feature disentanglement techniques.

Method SSR (%) ISR (%) SPL (%) Extra Distance (m) Average Speed (m/s)

SAC + RAE 29.6 87.7 82.2 10.591/4.443 0.457/0.090

+ β-VAE [54] 50.6 88.3 84.4 1.335/0.932 1.211/0.068
+ Factor-VAE [55] 51.4 88.7 83.5 2.032/1.324 1.179/0.084

+ DAVA [56] 46.4 87.9 82.0 2.138/1.557 1.124/0.069

+ Our CRD 93.6 98.9 86.1 3.254/0.564 0.812/0.086

4.4.5. Trajectory Visualization

Additionally, we visualized the UAV flight trajectories to intuitively assess flight
quality, as depicted in Figure 8. The trajectories are presented both as a perspective view
and a three-view drawing, with each UAV’s trajectory represented in a distinct color. Our
method generates smoother and more complete trajectories. In contrast, SAC + RAE results
in collisions between UAVs, underscoring the superior robustness and effectiveness of our
approach in path planning.

Figure 8. Visualizing UAV trajectories with perspective and three-view illustrations. Different colors
are used to represent the flight paths of various UAVs. Viewing the figures in color provides the
best clarity.

5. Conclusions
In this work, we have explored the generalization difficulties that encounter a modern

DRL-based multi-UAV collision avoidance framework when it is applied to new environ-
ments. To tackle this challenge, we presented a novel representation learning approach,
specifically causal representation disentanglement, which divides visual representations
into several distinct components, each with unique semantic meanings, and utilizes only
the causal elements for subsequent policy development. This strategy effectively removes
the influence of task-irrelevant factors, thereby enhancing the model’s generalization capa-
bilities. Extensive experiments conducted across a variety of unseen testing environments
demonstrate the practicality and effectiveness of our proposed method, outperforming
existing state-of-the-art techniques.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/drones9010010/s1, Video S1: video-of-crd.mp4.

https://www.mdpi.com/article/10.3390/drones9010010/s1
https://www.mdpi.com/article/10.3390/drones9010010/s1
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