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A B S T R A C T

Under the advancement of artificial intelligence, Unmanned Aerial Vehicles (UAVs) exhibit efficient flexibility
in military reconnaissance, traffic monitoring, and crop analysis. However, the UAV detection faces unique
challenges due to the UAV’s small size in images, high flight speeds, and limited computational resources.
This paper introduces a novel Background-centric Attention Module (BAM) to address these challenges. Unlike
traditional methods relying on UAV visual features, the BAM utilizes complex background information to
identify UAV presence. The BAM seamlessly integrates into existing UAV detection frameworks, improving
accuracy with no significant increase in the computation time. Extensive experiments on challenging datasets,
Naval Postgraduate School Drones (NPS), and Flying drones (FLDrones) using mainstream detectors YOLOv5
and TphPlus demonstrate the effectiveness of the BAM in significantly enhancing detection accuracy. This
research emphasizes the importance of background information in the UAV detection and proposes a method
aligning with human perceptual processes, paving the way for further advancements in the field.
1. Introduction

Recently, Unmanned Aerial Vehicles (UAVs) have been used in
many fields, e.g., military reconnaissance (Chen, Du, Zhang, Han, &
Wei, 2022; Shumeye Lakew, Sa’ad, Dao, Na, & Cho, 2020; Xiao et al.,
2022), civil surveillance (Asadzadeh, de Oliveira, & de Souza Filho,
2022; Mehta, Gupta, & Tanwar, 2020; Tsao, Girdler, & Vassilakis,
2022), disaster response (Pan, Chen, Yin, & Huang, 2022; Wan, Zhong,
Ma and Zhang, 2023; Yang et al., 2022), environmental monitor-
ing (McCabe et al., 2017; Mohamed, Al-Jaroodi, Jawhar, Idries, &
Mohammed, 2020; Román et al., 2022), etc. The trend in UAV de-
velopment is towards greater intelligence and swarm collaboration.
To achieve an effective collaboration of swarm UAVs and avoid col-
lisions, an accurate and reliable detection of surrounding UAVs plays
an important role.

Different from the conventional detection like in the Visual Object
Classes (VOC) dataset (Everingham, 2008) and the Microsoft Common
Objects in Context (MS-COCO) dataset (Lin et al., 2014), the UAV
detection has three main challenges. Firstly, UAVs typically occupy
only a tiny portion of the image. For instance, foreground objects in
the MS-COCO dataset occupy nearly 20% of the image area, whereas
UAVs account for just 0.05% in the Naval Postgraduate School Drones
(NPS) dataset (Li et al., 2016). Such a small target size classifies drone
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detection as a typical small-object detection task (Cheng et al., 2023;
Leng et al., 2023). Small objects often lack distinctive visual features,
a challenge that is particularly evident in drone detection, especially
under complex scenarios (Li et al., 2016; Rozantsev, Lepetit, & Fua,
2017).

Secondly, UAVs commonly have high flight speed. Therefore, the
UAV detection needs to be real-time, otherwise, the target would
be out of sight in the next frame. Thirdly, the platform on UAVs
has limited computing resources, which requires the detector to be
lightweight and low-cost. In general, the difficult-to-detect character-
istics and real-time processing requirement make the UAV detection
unique and challenging.

Based on successful practices on the conventional detection (He,
Zhang, Ren, & Sun, 2016; Redmon, Divvala, Girshick, & Farhadi, 2015;
Ren, He, Girshick, & Sun, 2017), existing UAV detection methods can
be roughly divided into two families. The first group of works (Tang
et al., 2023; Wang et al., 2022; Xie, Yu, Wu, Shi, & Chen, 2020) focus on
discovering and aggregating visual information of UAVs to enhance the
feature discriminatively. The second group of works (Ashraf, Sultani, &
Shah, 2021; Rozantsev, Lepetit, & Fua, 2015; Sangam, Dave, Sultani,
& Shah, 2023) focus on exploiting motion information of UAVs, which
can provide extra clues for detection. In general, existing works follow
https://doi.org/10.1016/j.neunet.2025.107182
Received 6 July 2024; Received in revised form 4 December 2024; Accepted 14 Ja
vailable online 21 January 2025 
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
nuary 2025

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0009-0002-6261-0624
https://orcid.org/0000-0003-3708-4634
https://orcid.org/0000-0001-8504-1677
mailto:amzou@stu.edu.cn
https://doi.org/10.1016/j.neunet.2025.107182
https://doi.org/10.1016/j.neunet.2025.107182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107182&domain=pdf


X. Lin et al. Neural Networks 185 (2025) 107182 
Fig. 1. Comparison of two different UAV detection perspectives. Previous works follow a target-centric procedure to find similar objects according to seen targets in training data,
which is difficult since UAVs are usually tiny and lack of distinct visual information. Differently, in this work, we propose a novel background-centric procedure to discover strange
areas-Region of Interest (ROI) areas according to typical backgrounds in training data, which is relatively easier to distinguish.
a target-centric procedure, which is inherited from the conventional
detection. As illustrated in Fig. 1, the detector typically learns discrim-
inative UAV representations from training data and then searches for
similar targets in the tested image. However, due to the tiny size of
UAVs and the lack of distinct visual information, the detector cannot
obtain sufficient supervision signals for representation learning, which
leads to error-prone UAV representations and thus failed detection
during testing.

Essentially, an image for the UAV detection typically consists of
two key components, i.e., UAVs and backgrounds. Then a question
naturally arises: since UAVs are too tiny to detect, can we seek clues from
their surrounding backgrounds? The answer is yes and we found that it
is more consistent with the human-like recognition procedure, which
tends to be background-centric (Collins & McDougle, 2021; Heald,
Lengyel, & Wolpert, 2021; Tran, Vu, Vo, Nguyen, & Nguyen, 2022;
Xie et al., 2024). ‘Background-centric’ can be concretized according
to different circumstances. For example, in the human world, ‘Back-
ground’ can be expressed as ‘Context’, and the research by Collins
and McDougle (2021) and Heald et al. (2021) has clarified the critical
role of context in human learning and the execution of motor skills.
In industrial anomaly detection, it should be defined as the ‘Nominal
Example Images’, learning feature representations from normal data to
detect deviations and anomalies is a widely recognized and successfully
applied approach (Tran et al., 2022; Xie et al., 2024). Similarly, in
the context of UAV background detection tasks: When faced with an
image, humans typically do not carefully search for targets based on the
UAV appearance information stored in their memory. In contrast, they
first observe whether there are any abnormal areas in the background.
If so, they focus on the specific region for further UAV recognition.
This background-centric recognition process essentially shares a similar
motivation with anomaly detection. As illustrated in Fig. 1, in the tested
image, after discovering an unusual black spot in a clear sky, a human
would focus on the corresponding areas for further UAV detection.
Therefore, backgrounds can provide an important guidance for the UAV
detection, which has been ignored in previous studies. Besides, contrary
to tiny UAVs, backgrounds occupy most of the areas in the image and
thus are sufficient for effective and reliable representation learning. In
2 
general, this background-centric motivation provides a new thought for
the UAV detection.

Therefore, in this work, we follow the human-like recognition pro-
cedure and design a novel Background-centric Attention Module (BAM)
for the UAV detection. Specifically, the BAM can effectively model
different background regions in the image and then discover abnormal
areas, which provides an important guidance for detecting potential
UAVs. The key to the BAM is to effectively represent background
regions, especially in complex scenarios. Considering that there are
usually multiple background elements present in an image, e.g., sky,
grass, etc., we calculate feature prototypes as background representa-
tions after feature clustering. It is noteworthy that we discard clusters
with fewer pixels and only reserve top-𝑘 clusters, which essentially
utilizes the characteristics of the UAV detection that background areas
usually occupy large portions of an image. Based on the constructed
background representations, the BAM can calculate a spatial attention
map to highlight the dissimilar regions, which commonly have a high
probability of containing the target UAV. To aid applicability, the BAM
is designed as a lightweight and plug-and-play module, which can be
easily inserted into existing UAV detection frameworks.

We implement the BAM on two mainstream detectors, i.e., YOLOv5
(Jocher et al., 2021) and TphPlus (Zhao, Liu, Lyu, Wang, & Zhang,
2023), and conduct evaluation on two challenging benchmarks, i.e.,
NPS (Li et al., 2016) and Flying drones (FLDrones) (Rozantsev et al.,
2017). The results show that the BAM can bring a significant accuracy
improvement and is suitable to be deployed in real-time UAV detection
tasks in practical situations, which validates its effectiveness.

The main contributions of this work can be summarized as follows:

1. We find that background information can provide an impor-
tant guidance for the UAV detection, which is consistent with
the human-like recognition procedure but usually ignored in
previous studies.

2. We design a novel BAM to effectively model background regions
of the image and discover dissimilar areas as potential targets.
Besides, the BAM is designed in a plug-and-play style and can be
easily implemented in existing detectors.
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3. We implement the BAM on two mainstream detectors and eval-
uate it on two representative and challenging benchmarks. The
results demonstrate its effectiveness and generalizability.

2. Related work

2.1. UAV detection

Due to the UAV’s small size and fast-moving characteristics, the
UAV detection is a challenging task. The UAV detection has been widely
studied, and existing works can be roughly divided into two groups, i.e.,
ppearance-based (Tang et al., 2023; Xie et al., 2020) and motion-based

methods (Ashraf et al., 2021; Rozantsev et al., 2015; Sangam et al.,
2023). Appearance information, e.g., shape, color, and texture, is cru-
cial for the UAV detection. Adaptive switching spatial–temporal feature

aps (ASSTFM) (Xie et al., 2020) was proposed to aggregate object
appearance information by designing a spatial feature map, which can
improve the visibility and discrimination of UAVs. Tang et al. (2023)
elected multiple state-of-the-art detectors and optimized each detector

for the unique appearance features of UAV objects, which can achieve
an ensembled performance while introducing high computational cost.
To supplement appearance information, researchers also worked on ex-
ploiting motion information, which is crucial, especially for fast-moving

AVs. Rozantsev et al. (2015) proposed to construct motion-stabilized
spatiotemporal cubes to highlight moving objects. However, its reliance
n a perfect UAV-centered cube limits its performance in practice,

especially for tiny targets with structural distortions. DogFight (Ashraf
et al., 2021) was proposed to use a two-stage segmentation-based
approach employing spatiotemporal attention cues. However, due to

ogfight’s reliance on non-parallelized connected component analysis
and tracking on the CPU, it experiences lower frame rates and through-
ut. Additionally, the involvement of non-differentiable components
inders its ability to function as a fully end-to-end model. TransVis-
rone (Sangam et al., 2023) enhances feature integration by utilizing a
emporal transformer to fuse features from multiple frames, implicitly
ncoding motion information. Nevertheless, TransVisDrone’s adoption

of a hybrid spatio-temporal transformer architecture, integrating both
the CSPDarknet53 and VideoSwin models, introduces its own set of
hallenges. This complex structure not only amplifies the difficulty of
raining the model but also necessitates more expensive computational
esources, presenting significant barriers to accessibility and scalability.

Although existing methods attempt to overcome the challenges of
the UAV detection, they usually follow the object-centric paradigm,

hich still suffer from the extremely small size and complex motion of
UAVs. In this work, we focus on the commonly ignored background in-
ormation and attempt to find important clues for discovering potential

UAVs.

2.2. Attention mechanism

In the field of the object detection, the attention mechanism is
a key technique that draws inspiration from the way human vision
allocates attention, focusing on important information within images
to improve detection accuracy and efficiency. For example, Squeeze-
and-Excitation Network (SENet) (Hu, Shen, Albanie, Sun, & Wu, 2018)
irst introduces a channel attention mechanism that effectively aggre-
ates global information. The Convolutional Block Attention Module

(CBAM) (Woo, Park, Lee, & Kweon, 2018) takes a step further by
combining both spatial and channel attention simultaneously. Attention
CoupleNet (Zhu et al., 2019) introduces a fully convolutional coupling
tructure that can integrate global and local information of an object
o enhance its representation. The Co-Attention mechanism (Hsieh, Lo,

Chen, & Liu, 2019), by establishing a shared attention relationship
between examplar images and query images, enhances feature learning
nd achieves high-precision detection of novel objects. Similarly, PrIme

Sample Attention (PISA) (Cao, Chen, Loy, & Lin, 2020) emphasizes
 b

3 
different treatments based on the sample importance, which would face
challenges in recognizing tiny UAVs that are obviously not the ‘‘main’’
samples in scenes. Neural Attention Learning (NEAL) (Ge, Song, Ma, Qi,
& Luo, 2023) generates attention response maps to guide the network
towards features that significantly impact prediction outcomes. Overall,
espite the attention-based methods (Cao et al., 2020; Ge et al., 2023;

Hsieh et al., 2019; Hu et al., 2018; Woo et al., 2018; Zhu et al., 2019)
achieve promising performance in the conventional detection, they
mostly focus on aggregating information about important and salient
objects, which commonly occupy substantial regions in the image.
However, the aforementioned attention-based methods are not suitable
for the UAV detection since tiny UAVs in a complex scenarios can only
ccupies negligible regions and easily be concealed by background sig-

nals. Different from previous works, we propose a background-centric
attention mechanism and focus on modeling background information to
discover potential targets, which is more suitable for the UAV detection.

3. Methods

3.1. Overview

In this section, we introduce how to utilize the BAM in object
detection frameworks, as illustrated in Fig. 2, aimed at optimizing
eature map analysis during the object detection process. The BAM

precisely focuses on the background information with stronger su-
pervisory signals in the input feature maps, indirectly indicating the
potential positions of UAVs. The module consists of two main parts:
background prototype generation and potential target region search.
Firstly, background prototypes are extracted from the input feature
maps using feature clustering techniques, while ignoring the least
representative clusters to reduce noise interference. Subsequently, the
imilarity between background prototypes and input feature maps is
omputed to indirectly identify potential target regions. This approach
ot only enhances object detection accuracy in complex backgrounds,
ut also offers a novel perspective and technical pathway for the object
etection in computer vision.

3.2. Background prototype generation

In drone target detection scenarios, the Background Prototype Gen-
eration component serves as the core of the BAM, playing a vital role
in distinguishing between background features and potential target
features within an image. This process starts with the application of
a clustering algorithm to the feature map of the given image, denoted
by 𝐹 ∈ Rℎ×𝑤×𝑑 , where ℎ and 𝑤 represent the height and width of the
feature map, respectively, and 𝑑 indicates the feature dimensionality
at each pixel. For each pixel located at position (𝑖, 𝑗), where 𝑖 ∈
{1, 2,… , ℎ} and 𝑗 ∈ {1, 2,… , 𝑤}, the feature vector is denoted by 𝐹𝑖𝑗 ,
emphasizing the extraction of a 𝑑-dimensional feature vector from 𝐹 .
We aim to better represent and differentiate between background and
target foreground areas through feature learning on the feature map.

By applying a clustering algorithm on the feature map at each
pixel, it is assumed that similarities among features representing the
same category will be discovered, manifesting in the form of clustering.
The centroids obtained from the clustering algorithm are considered
representative prototypes of their respective categories, expressed as
𝐶 = {𝐶1, 𝐶2,… , 𝐶𝐾}, where 𝐶𝑙 ∈ R𝑑 , 𝑙 ∈ {1, 2,… , 𝐾} is the representa-
tive prototype of the 𝑙 category, and 𝐾 represents the total number of
categories.

The category representation for each centroid 𝐶𝑙 can be defined as
ollows:

𝐶𝑙 =

{

Background Prototype, if 𝑙 ∈ {1, 2,… , 𝐾 − 1}
Minimal Clustering, if 𝑙 = 𝐾

(1)

When performing K-means clustering, which refers to the total num-
er of clusters, it is expected that at least one cluster will represent the
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Fig. 2. Illustration of our BAM. Our BAM module is designed to highlight anomalous regions in the original feature map that differ from the typical background in the training
data. Our approach first clusters the features of the input feature maps, extracts the typical background prototype, and removes the least salient clusters. Then, the similarity is
computed by background prototype with the original feature maps, and after obtaining a number of background attention maps, they are compared with the original feature maps
to obtain the anomalous regions, which constitute our target attention maps. Finally, we fuse the target attention maps with the original feature maps.
characteristics of the drone, while the other clusters will represent the
typical features of the remaining background. As illustrated in Fig. 2,
in the specific scenario of the drone detection, the background area
occupies the majority of the image, so we can consider that the larger
clusters, i.e., the clusters {1, 2, . . . , 𝐾 − 1}, actually represent typical
background prototypes. The strategy of excluding the minimal cluster
(i.e., the 𝐾th cluster) aims to ignore the least representative prototypes,
which are typically associated with noises or minor elements (e.g., the
drones) that are not characteristics of the main background. By focusing
on the larger, more representative background clusters, we aim to
better locate the target drone area, thus improving the detection of
drones in complex backgrounds.

3.3. Searching for potential target regions

Building upon the Background Prototype Generation, the subse-
quent step in the BAM workflow is to identify and extract characteris-
tics background features, aiding in the distinction between background
and potential foreground target regions. By leveraging the predefined
pixel positions (𝑖, 𝑗), where 𝑖 ∈ {1, 2,… , ℎ} and 𝑗 ∈ {1, 2,… , 𝑤}, we
compute the similarity score 𝑆[𝑖, 𝑗] as the maximum cosine similarity
with the 𝐾 − 1 background clusters:

𝑆[𝑖, 𝑗] = max

(

{ 𝐶𝑙 ⋅ 𝐹𝑖𝑗

‖𝐶𝑙‖ ⋅ ‖𝐹𝑖𝑗‖

}𝐾−1

𝑙=1

)

, 𝑖 ∈ {1, 2,… , ℎ},

𝑗 ∈ {1, 2,… , 𝑤}. (2)

This calculation enables the model to identify regions correspond-
ing to the background within 𝐹 . Learning these typical background
features allows the model to concentrate on anomalous areas, the non-
background regions that are potential target sites. The attention map
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝 ∈ Rℎ×𝑤 is then constructed by taking the complement of
the similarity scores:
AttentionMap[𝑖, 𝑗] = 1 −𝑆[𝑖, 𝑗], 𝑖 ∈ {1, 2,… , ℎ}, 𝑗 ∈ {1, 2,… , 𝑤}. (3)

4 
By computing the similarity scores between 𝐹 and the background
prototypes, corresponding to the 𝐾 − 1 clusters, we can infer that
higher similarity scores indicate a greater likelihood of the entire
region being the background (Eq. (2)). By calculating the regions with
high similarity between the original feature map and the background
representation, we identify the background areas. Our goal is to locate
these background areas and then focus on the regions outside of them,
as these are the potential foreground regions. As described in Eq. (3),
we invert the attention map: the background regions with initially
high similarity are transformed into low-weight regions after inversion.
Similarly, the regions with high attention map values correspond to
areas with low background similarity, which are more likely to contain
targets.

3.4. Pseudocode

In this subsection, a detailed explanation of the pseudo-code for the
BAM is provided, as shown in Algorithm 1. The BAM aims to enhance
the focus on background information in the task of object detection,
thereby improving detection performance. Initially, we subject the
input feature map 𝐹 to clustering algorithms to identify clustering
patterns of background information automatically. Subsequently, based
on the similarity between each pixel and the centroids of background
clusters, we generate the background attention map 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝.
Specifically, we input the feature map 𝐹 into the clustering algorithm to
obtain the cluster centroids 𝐶, as well as the sizes of each cluster, which
are denoted by 𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒𝑠. Then, we sort the cluster centroids 𝐶 and
𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒𝑠 in descending order of cluster sizes and select the top 𝐾− 1
clusters as background clusters 𝐶. Next, we traverse the entire feature
map, compute the similarity between each pixel and the centroids of
the background clusters 𝐶𝑙, and then aggregate these similarities using
aggregation functions, followed by taking the negation to obtain the
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Fig. 3. Details of the incorporation of BAM. BAM acts as a plug and play attention in the detection network that is inserted before the detection head. The difference between
YOLOV5 and TphPlus is the different design of the detector head, and the fact that Tphplus has designed a cross-layer asymmetric transformer (CA-Trans) to replace the additional
tiny detector head. BAM network architecture first needs to input the original feature map, the attention map obtained after processing is weighted with the original feature map
nd fed into the detection head.
c
d

attention map for potential target regions 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝.
We choose to employ the K-means clustering algorithm within

ur framework. However, although K-means clustering serves as our
aseline clustering method, it does not imply it as the ultimate choice
mong all clustering techniques. Instead, our decision highlights the
lexibility of this approach, allowing researchers to adjust their clus-
ering algorithms according to the characteristics of their datasets.
urthermore, based on our experimental results, we determine the
ptimal value of the number of clusters 𝐾 to be 5. We encourage
esearchers to adjust the top-𝐾 parameter based on the specifics of
heir datasets, as this customization does not compromise the efficacy
r utility of the proposed method.

Algorithm 1 Background-Centric Attention Module

1: Input: 𝐹 ∈ Rℎ×𝑤×𝑑

2: Output: 𝑇 𝑎𝑟𝑔 𝑒𝑡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝 ∈ Rℎ×𝑤

3: 𝐶 , 𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒𝑠 ← ClusteringAlgorithm(𝐹 )
4: Sort 𝐶 and 𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒𝑠 in descending order based on 𝑐 𝑙 𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒𝑠
5: Let 𝐾 be the total number of clusters, i.e., the length of 𝐶
6: Initialize 𝑆 ∈ Rℎ×𝑤

7: for 𝑖 = 1 to ℎ do
8: for 𝑗 = 1 to 𝑤 do
9: Initialize max_similarity ← 0
0: for 𝑙 = 1 to 𝐾 − 1 do

11: 𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦 ←
𝐶𝑙 ⋅𝐹𝑖𝑗

‖𝐶𝑙‖⋅‖𝐹𝑖𝑗‖
2: if 𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦 > 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦 then
3: 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦 ← 𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦
4: end if
5: end for
6: 𝑆[𝑖, 𝑗] ← 𝑚𝑎𝑥_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦
7: end for

18: end for
9: for 𝑖 = 1 to ℎ do
0: for 𝑗 = 1 to 𝑤 do
1: 𝑇 𝑎𝑟𝑔 𝑒𝑡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝[𝑖, 𝑗] ← 1 − 𝑆[𝑖, 𝑗]
2: end for
3: end for
4: return 𝑇 𝑎𝑟𝑔 𝑒𝑡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑀 𝑎𝑝

3.5. Integration details

The BAM is a plug-and-play attention mechanism that is seamlessly
integrated into detection networks, specifically positioned before the
5 
detection head. As illustrated in Fig. 3, and further elaborated in the ex-
perimental subsection, we will use YOLOv5 and TphPlus as exemplary
ases to demonstrate the application of BAM. Unlike YOLOv5, TphPlus
istinguishes itself with a uniquely designed detection head and incor-

porates a Cross-Layer Asymmetric Transformer (CA-Trans) to replace
the additional tiny detection head typically found in such architectures.
The network architecture of BAM begins with the input of the original
feature map. After processing, the resulting attention map is weighted
and concatenated with the original feature map, which is then fed
into the detection head. This integration not only enhances the feature
representation by emphasizing salient background information but also
improves the model’s ability to distinguish between background and
foreground objects, leading to more accurate detection capabilities.

4. Experiments

4.1. Datasets and metrics

Datasets. The NPS Drones dataset (Li et al., 2016) comprises a
collection of 50 high-definition video sequences designed to enhance
the detection capabilities of aerial aircraft, particularly small drones.
These videos encompass a total of 70,250 frames and were captured
using a GoPro 3 camera mounted on a custom-made triangular-winged
aircraft. The NPS dataset consists of color images with resolutions of
either 1920 × 1280 or 1280 × 760. The videos are recorded at a
frame rate of 30 frames per second. Targets in the images occupy a
maximum area of 6.6 × 10−4 and a minimum area of 8.2 × 10−5, with
an average proportion of only 0.05%. Annotations utilized in this study
were derived from the clean version released by Dogfight (Ashraf et al.,
2021). The training/validation/testing split follows the methodology of
Dogfight (Ashraf et al., 2021) and TransvisDrone (Sangam et al., 2023).

The FLDrones dataset (Rozantsev et al., 2017) consists of footage
captured by cameras mounted on flying drones, featuring a mix of
indoor and outdoor scenes. This dataset contains 14 videos with a total
of 38,948 frames, with grayscale resolutions of 640 × 480 or 752 × 480.
Targets in the images occupy a maximum area of 1.4 × 10−1 and a
minimum area of 2.6 × 10−4, with an average proportion of only 0.07%.
Annotations utilized in this study were derived from the clean version
released by Dogfight (Ashraf et al., 2021) and TransvisDrone (Sangam
et al., 2023).

Metrics. We utilize metrics such as average precision (AP), pre-
cision, and recall to gauge detection quality, while also considering
frames per second (FPS) to measure computational efficiency.
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Table 1
Compared with several state-of-the-art methods on the NPS and FLDrones datasets. The best results are highlighted in red,
while the second-best results are highlighted in blue. Evaluation metrics include MAP (precision) and FPS (speed).

Methods Venue AP-NPS AP-FLDrones FPS

Mask-RCNNs (He, Gkioxari, Dollár, & Girshick, 2017) ICCV’17 0.89 0.68 17.55
SCRDet-H (Yang et al., 2019) ICCV’19 0.65 0.52 –
SCRDet-R (Yang et al., 2019) ICCV’19 0.61 0.52 –
FCOS (Tian, Shen, Chen, & He, 2019) ICCV’19 0.83 0.62 –
SLSA (Wu, Chen, Wang, & Zhang, 2019) ICCV’19 0.46 0.61 –
MEGA (Chen, Cao, Hu, & Wang, 2020) CVPR’20 0.83 0.65 –
De-DETR (Zhu et al., 2020) ICLR’21 0.76 – 10.69
VisTR (Wang et al., 2021) CVPR’21 0.66 – 1.6
TPH-YOLOv5 (Zhu, Lyu, Wang, & Zhao, 2021) ICCV’21 0.92 0.69 25
Dogfight (Ashraf et al., 2021) CVPR’21 0.89 0.72 1.0
TransVisDrone (Sangam et al., 2023) ICRA’23 0.95 0.75 24.6
CFINet (Yuan, Cheng, Yan, Zeng, & Han, 2023) ICCV’23 0.90 0.63 19.3
YOLOV8l (Jocher, Qiu, & Chaurasia, 2023) Github’23 0.93 0.68 27.4
YOLOV9c (Wang, Yeh, & Mark Liao, 2025) ECCV’25 0.91 0.67 30.8
YOLOV10l (Wang et al., 2024) ArXiv’24 0.92 0.67 27.9
YOLOV11l (Jocher & Qiu, 2024) Github’24 0.92 0.63 188
RT-DETR (Zhao et al., 2024) CVPR’24 0.95 0.66 44.9

YOLOv5l (Jocher et al., 2021) Github’21 0.93 0.66 46
YOLOv5l+Ours – 0.94 0.76 34.1
TphPlus (Zhao et al., 2023) RS’23 0.94 0.71 40.2
TphPlus+Ours – 0.96 0.79 28.7
c

w
a

n

4.2. Implementation details

We implement our model in PyTorch. All our models are trained
and tested using an NVIDIA RTX3090 GPU. Our baseline model choice
is the TphPlus (Zhao et al., 2023) model, specifically designed for
ground object detection of small targets, employing consistent hyper-
parameters with TphPlus (Zhao et al., 2023). Drawing inspiration from
rior works (Ashraf et al., 2021; Sangam et al., 2023), we initiate
raining of our model by employing pre-trained weights available for
OLOv5l (Jocher et al., 2021) on MS-COCO (Lin et al., 2014). Addi-

tionally, as the current UAV dataset does not provide annotations for
empty frames - frames devoid of target UAVs, we adhere to the previ-
ous methodology. Thus, we evaluate using only frames with provided
annotations.

Our input frame size is 1920 × 1280. We adopt the Adam opti-
mizer (Kingma & Ba, 2014), setting momentum to 0.843. To better
control the adjustment of learning rates during training, we employ a
osine learning rate scheduler (He et al., 2019), initializing the learning
ate to 3 × 10−4, and decaying it to 0.12 times the initial learning rate in
he final epoch of training. The total number of training epochs is set
o 80. For the configuration of the non-maximum suppression module,
e set the IoU threshold to 0.6 and the confidence threshold to 0.001,

onsistent with prior studies. Considering GPU memory limitations, we
et the batch size to 4. For the clustering algorithm used, we opted for
he PyTorch implementation of the K-means clustering algorithm.

4.3. Comparison with state-of-the-art methods

As shown in Table 1, we evaluated various state-of-the-art tech-
niques (Ashraf et al., 2021; Chen et al., 2020; He et al., 2017; Jocher &
Qiu, 2024; Jocher et al., 2023, 2021; Sangam et al., 2023; Tian et al.,
2019; Wang et al., 2024, 2021, 2025; Wu et al., 2019; Yang et al., 2019;
Yuan et al., 2023; Zhao et al., 2023, 2024; Zhu et al., 2021, 2020) on
he NPS and FLDrones datasets.

We also compared other advanced models, such as CFINet (Yuan
et al., 2023), which has shown excellent performance in small object
detection tasks by outperforming mainstream methods on the SODA-
 and SODA-A datasets. CFINet achieves this by enhancing detection

hrough coarse-to-fine proposal generation and feature imitation learn-
ng. However, in our specific task, it did not achieve the expected
erformance. We attribute this to the scale and diversity of the dataset.
hile the SODA datasets are larger and more comprehensive, providing
6 
greater generalizability, currently available UAV detection datasets, in-
luding ours, are relatively limited in these aspects. This likely prevents

CFINet from fully leveraging its strengths.
We further analyzed the YOLO series, including YOLOv5, YOLOv8,

YOLOv9, YOLOv10, and YOLOv11 (Jocher & Qiu, 2024; Jocher et al.,
2023, 2021; Wang et al., 2024, 2025; Yuan et al., 2023). YOLOv5
adopts a lightweight design and incorporates the CSPNet architecture to
optimize computational efficiency, making it widely used in industrial
inspection and autonomous driving scenarios and particularly well-
suited for real-time deployment. While YOLOv8 introduces dynamic
anchoring adjustments to enhance adaptability to targets of varying
sizes, this enhancement provides limited benefits in our dataset, which
primarily features small and uniformly sized drones. YOLOv9 employs
programmable gradient information (PGI) to reduce information loss,
but the minimal valid information available from small drone targets
reduces the impact of this improvement in our context. YOLOv10 elimi-
nates the need for non-maximum suppression (NMS) in end-to-end rea-
soning, yet this innovation did not yield noticeable performance gains
on our dataset or the RTX 3090 platform. YOLOv11 introduces depth-

ise separable convolution, significantly reducing computational load
nd improving FPS, which we recognize as a meaningful advancement.

Despite the rapid evolution of the YOLO series, we selected YOLOv5
as our baseline model to incorporate and compare our attention mech-
anisms due to its robust performance and stability across diverse sce-
arios.

As highlighted in Table 1, our proposed BAM module enhances
detection performance in UAV environments. Integrating BAM into
YOLOv5 increased AP metrics for the NPS and FLDrones datasets by 1%
and 10%, respectively. Similarly, applying BAM to TphPlus resulted in
AP metric improvements of 2% and 8% on the same datasets. Although
BAM introduces a slight reduction in FPS, the models still achieve real-
time performance, with YOLOv5 and TphPlus achieving frame rates
of 34.1 and 28.7 FPS, respectively. These results demonstrate that
BAM significantly improves UAV object detection accuracy in complex
scenarios while maintaining real-time performance.

4.4. Ablation analysis

In this subsection, we compare our attention mechanism with clas-
sical attention mechanisms, discuss the design choices regarding at-
tention mechanisms, and report their performances. The comparison
is conducted on the FLDrones dataset.
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Table 2
Compared with other classical attention mechanisms on the FLDrones dataset.

Methods AP Precision Recall

TphPlus (Zhao et al., 2023) 0.714 0.726 0.691
TphPlus (Zhao et al., 2023) + SE (Hu et al., 2018) 0.716 0.731 0.687
TphPlus (Zhao et al., 2023) + CBAM (Woo et al., 2018) 0.712 0.737 0.683
TphPlus (Zhao et al., 2023) + MLCA (Wan, Lu et al., 2023) 0.711 0.728 0.694
TphPlus (Zhao et al., 2023) + CAA (Cai et al., 2024) 0.630 0.678 0.580
TphPlus (Zhao et al., 2023) + CAFM (Hu, Gao, Zhou, Dong, & Du, 2024) 0.709 0.738 0.705
TphPlus (Zhao et al., 2023) + AFGCAttention (Han et al., 2025) 0.700 0.716 0.667
TphPlus (Zhao et al., 2023) + Ours 0.790 0.799 0.711
l
c
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Table 3
Ablation on minimal and residual clustering for background prototyping.

Minimal clustering Residual clustering AP Precision Recall

0.714 0.726 0.691
✓ 0.754 0.766 0.671

✓ 0.751 0.772 0.709
✓ ✓ 0.790 0.799 0.711

Table 4
Impact of the cluster number 𝐾 on Model AP.

Cluster number 3 5 7 10

AP (%) 77.9 79.0 77.8 77.4

Comparison With Other Attention Mechanisms. According to the
esults presented in Table 2, we conducted a comprehensive perfor-
ance comparison of various attention mechanisms integrated with the
phPlus baseline model on the FLDrones dataset. We observed that tra-
itional attention models such as SE and CBAM had a minimal impact
n model performance, with SE only increasing the Average Precision
AP) by 0.2%, and CBAM causing a 0.2% decrease in AP. Furthermore,
LCA, CAA, CAFM, and AFGCAttention all led to a decrease in AP, with

eductions of 0.3%, 8.4%, 0.5%, and 1.4%, respectively. In contrast,
he introduction of BAM significantly boosted AP by 7.6%, and also
mproved Precision and Recall rates.

These results highlight the performance variance among different
attention mechanisms and underscore the importance of selecting an
appropriate attention mechanism for specific tasks. Classical attention
models, such as SE and CBAM, are primarily designed to identify
important and salient foreground objects in images, which are usually
more discernible across the entire image. However, this premise does
not apply to the detection of drones against complex backgrounds,
where the foreground regions of drones are relatively small and often
difficult to detect effectively. MLCA and CAFM aim to enhance the
model’s sensitivity to key features to improve recognition accuracy, but
in this task scenario, the foreground features of drones provide very
limited effective information. CAA attention is more suitable for multi-
task learning scenarios. AFGCAttention, despite its adaptive feature
enhancement through graph structures, is insufficient for amplifying
the already limited supervisory signals of target features.

In summary, we recognize that simply transferring other atten-
tion mechanisms is inadequate for the task of detecting small drones
against complex backgrounds. It is imperative to develop an attention
mechanism that leverages the robustness of background information
and guides the model to focus on the differences between targets and
backgrounds. This realization led us to propose the BAM attention
mechanism, which harnesses the robustness of background informa-
tion to guide the detection and recognition of drones by highlighting
the disparities between targets and backgrounds. This approach not
only addresses the specific challenges of drone detection but also
enhances the model’s capability to detect small targets within complex
environments.

Impact of Minimal and Residual Clustering on Background Pro-
otyping. As described in the methods section, we have a strategy for
electing the generated feature clusters. When handling the background
7 
prototype for small UAV detection, we proposed a strategy of discarding
the minimal cluster and using the remaining clusters as the background
prototype. To validate the effectiveness of this strategy, we conducted
ablation experiments to evaluate the impact of different clustering
strategies on background and small UAV recognition. The experimental
results are shown in Table 3.

The rows in the table represent four different background prototype
selection strategies: the first row represents the baseline performance
with no clustering method, where the original data is used directly for
small UAV detection without any background prototype selection. The
second row refers to the background prototype based on the minimal
cluster, meaning the class with the fewest feature points is selected
from all clusters. This strategy may introduce more background noise,
affecting the accuracy of small UAV detection. The third row denotes
the background prototype based on all clusters without discarding
any clusters, which may lead to confusion between small UAV and
background features, further hindering small UAV recognition. The
ast row represents our proposed optimal strategy, where the minimal
luster is discarded during training and only the remaining clusters are
sed as the background prototype. This strategy effectively avoids the
ackground interference from the minimal cluster and helps the model
etter distinguish between background and small UAVs.

The experimental results show that our strategy (the last row)
outperforms the other strategies in terms of AP, Precision, and Recall,
particularly excelling in small UAVs detection. Specifically, discarding
the minimal cluster significantly enhances the distinction between
background and small UAV, allowing the model to more accurately
identify small UAVs. In contrast, other strategies (especially using the
minimal cluster or all clusters as the background prototype) introduce
more background noises, reducing small UAV detection performance.
Therefore, the ablation experiment validates the effectiveness of our
proposed background prototype selection strategy.

The Number of Clusters 𝐾 Chosen. Compared to the innovative
AM proposed in this paper, employing K-means clustering is merely
 baseline choice, not the core of our innovation. We advocate for
he exploration of clustering algorithms better suited to specific work
cenarios. Consequently, we have conducted a series of ablation studies
n the selection of the cluster number 𝐾, testing various configurations
t 𝐾 = 3, 𝐾 = 5, 𝐾 = 7, and 𝐾 = 10. As shown in Table 4,

the experimental results indicate that when adjusting the number of
clusters and the selected background feature quantity, the MAP of the

odel exhibits only slight fluctuations. The highest value of 79% and
he lowest value of 77.4% represent the current state-of-the-art level
ompared to the model without BAM, with a difference of only 1.6%

between them.

4.5. Edge deployment: NVIDIA Jetson Xavier

To ensure that our drone target detection model performs excel-
lently in real-world applications, we conducted a series of tests on the

VIDIA Jetson Xavier NX hardware. Our Jetson Xavier NX is equipped
ith 7505MB of video memory and a 6-core CPU, capable of running
ur model at 640 resolution in 10PW power mode while maintaining
 smooth output of 21 FPS. Notably, throughout the entire testing
rocess, we did not utilize TensorRT optimization, and the device’s

real-time operating temperature was consistently maintained below
◦
25 C.
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Fig. 4. Visualization of the feature refinement process. From left to right: F - original feature map, Clustering - clustering result, Attention Map - target attention map, F′ - refined
feature map obtained by integrating the attention mechanism with the original feature map, and Result - final detection result.
Fig. 5. Comparison of detection results with and without BAM. Visualization of the original baseline (left) and the baseline enhanced with BAM (right).
4.6. Visualization

In this subsection, we present the visualization of our BAM, which
plays a pivotal role in enhancing the detection of small targets like
UAVs amidst complex backgrounds.

As shown in Fig. 4, the feature refinement process of BAM is visual-
ized step by step. From left to right, it displays the original input feature
map (F), the background clustering map generated through clustering
(Clustering), the background-based attention map (Attention Map), the
optimized feature map fused with attention (F′), and the final detection
result (Result). The attention map highlights areas that significantly
differ from the background, guiding the model to focus on potential
target locations, ultimately generating the optimized feature map (F′)
8 
and significantly improving detection performance. Fig. 5 presents a
comparative analysis of detection results with and without BAM. With
BAM, the model can more effectively distinguish between small targets
and the background, significantly reducing the occurrences of missed
and false detections. Specifically, the incorporation of BAM allows the
model to focus on anomalous areas within the background, leading to
more accurate target localization.

The visual analysis above demonstrates that the introduction of
BAM not only enhances detection accuracy but also strengthens the
model’s robustness towards small targets in complex scenarios. This
approach emphasizes the crucial role of background information in
UAV detection, aligning more closely with human cognitive processes
compared to traditional target-centric methods.
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5. Conclusion and future work

Inspired by the UAV detection scenario, we prioritized background
information for guiding the UAV detection and recognition. We devel-
ped a plug-and-play BAM that effectively models and characterizes
omplex backgrounds. By identifying regions significantly different
rom background features, the BAM indirectly generates spatial atten-
ion maps highlighting key areas containing UAVs with high prob-

ability. Furthermore, we seamlessly integrated this attention module
nto two popular detection frameworks and validated its performance
hrough qualitative and quantitative analyses of challenging datasets.
ur results demonstrate a significant improvement in detection accu-

racy while meeting the real-time application requirements of UAVs.
This underscores the ability of background robustness to enhance the
model’s sensitivity to UAV targets, thereby boosting the UAV detection
accuracy.

Although the BAM has demonstrated superior performance in UAV
target detection tasks, it does have its limitations. For instance, in

AV target detection tasks, compared to natural image datasets used
n general object detection, UAV datasets are often smaller in scale and
ave fewer target varieties. This somewhat limits the generalization
apabilities that the network model can learn. Therefore, how to further
mprove the quality of learning samples by combining image features
rom a UAV perspective with existing data augmentation strategies is a

highly valuable direction for future research.
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